Author: anschau

Successful Approval of QM System

The services and the quality of our company have an impact on the successful business activities of our customers. Since 1995, SVA Potsdam GmbH has been following an ISO DIN EN 9001 certified quality management system.

Once again this year, DNV GL Business Assurance Zertifizierung & Umweltgutachter GmbH approved the successful application of our QM system to research, development and services in the area of hydrodynamics. The certificate can be viewed here.

Our company also operates as a DIN EN ISO/IEC 17025 certified test laboratory (DAkkS certificate No. D-PL-15182-01-00). The certification covers the measurement of moving and non-moving objects in steady and unsteady water flows, the measurement of forces, moments and rotational speeds of rotating objects in water and fixed objects subjected to a water flow. The expertise of the test laboratory for this kind of measurements were once again approved by Deutsche Akkreditierungsstelle (DAkkS) in November 2017.

Update ==> 112th Plenary Meeting of Schiffbautechnische Gesellschaft e. V.

This year, the 112th plenary meeting of the Schiffbautechnische Gesellschaft e.V. (STG, The German Society for Maritime Technology) took place from 22nd to 24th November 2017 in Potsdam, Germany. The meeting started with the time-honoured Georg Weinblum Commemoration Lecture at the Schiffbau-Versuchsanstalt Potsdam GmbH (SVA). The lecture on „Development of CFD Methods for Industrial Ship Flow Applications” was given by Prof. Takanori Hino (Yokohama National University).

In the course of the framework programme a guided tour through the SVA facilities could be taken, which attracted many of the participants. Selected areas of SVA were shown: model and propeller manufacturing, model outfitting, the Towing Tank, Cavitation Tunnel and the Friction Measurement Test Stand.

Friction Measurements of Different Coatings in a Friction Tunnel

Offene Messstrecke des Reibunsgmessstandes.

It is well known that the frictional resistance of a ship is a substantial part of its total resistance (around 25 up to 75 %). This is mainly influenced by the surface texture of the hull skin, which depends for example on the coating or on the degree of fouling. With respect to power consumption reduction it therefore can be meaningful to minimise the frictional resistance by applying special coatings or surface textures. The requirements for these coatings are low friction and anti-fouling properties as well as long service times and resistance to mechanical impacts regarding ice, tugs or fenders. With the help of the friction tunnel of the SVAtech the friction characteristics of these coatings can be measured. Long term tests give answers how fouling and imperfections affect the friction characteristics of the coating.

The frictional resistance of a one-sided wetted flat plate is well known from semi-empirical investigations. There are several formulas for laminar and turbulent flow, developed by e.g. Blasius, Prandtl, Schönherr, Schlichting/Gersten, etc. For Schlichting/Gersten also the roughness of the surface is included, but when dealing with complex surface structures a mere roughness consideration is not enough.

In this case, measurements as with SVAtech’s friction tunnel are still meaningful for providing reliable results in an easy way. Put simply, the friction tunnel is a small water circuit tank in which plates with the coating to be investigated can be installed. Therefore two of these plates form a narrow rectangular channel for which the wall shear stress inside can be derived from the pressure loss between several observation points. In SVAtech’s friction tunnel 12 equidistant positions over the length of the test plates are used for measuring the pressure drop. Finally, the friction coefficient is obtained by dividing the wall shear stress by the dynamic pressure.

The friction tunnel was developed in 1992 at the Research Institute for Hydraulic Engineering and Shipbuilding (Versuchsanstalt für Wasserbau und Schiffbau) in Berlin and was property of the Technical University from Berlin for a long time until in 2004 SVA bought it. To reach the high accuracy demands of the customers several modifications were necessary. The test section was extended to 12 pressure sensors and a venting valve for each pressure sensor to ensure that no air bubbles are trapped inside the circuit. A magnetic inductive flow meter helps determining the water velocity in the test section. There is a choice of two different flow meters (one covering the small and one the high water speed ranges). Furthermore, 2 temperature sensors were installed to determine the water properties like density and viscosity. A microprocessor automatically runs the engine control of the pump and conducts the calculation of the fitted pressure gradient and friction coefficient. The data is transferred to a computer where the final evaluation is done.

The test procedure is fully automated in such a way that the whole speed range from 1 m/s up to 18 m/s (or respectively log(Re) = 5.4 up to 6.7) is measured in 26 steps three times. For each step there is a waiting time of 60 s for the stabilization of the flow and finally 15 s of measurement time. In the end the mean value curve of all three runs is calculated.

The usual way to present the results of friction measurements is in dependency of the Reynolds number. The challenge is to make the channel flow comparable with a flow around a body as for ship applications. The solution is to determine experimentally the reference length for the calculation of the Reynolds number in such a way that it equals a flow around a body. With the resulting reference length (which is almost the channel perimeter) a good accordance with the ITTC’57 curve is reached for technically smooth plates.

For textures a presentation over s+ can be more meaningful than the Reynolds number. The s+ value is the dimensionless characteristic length for one structure element, e.g. for riblet structures it is the distance of two riblets.

Different measurements were carried out. Good results were achieved with the former anti-fouling spray “Biotard”. For a wide range of Reynolds numbers the friction coefficient is slightly lower than that of the smooth plate. A bigger effect is visible when using riblets which – in a defined s+ range – can cause a significant reduction of the friction. During the investigations of riblet structures the idea came up to test “simple” riblets made by hand with sandpaper and a belt grind. The resulting structure is similar to the perfect riblet structure. The maximum friction reduction is not as big as for the perfect riblets but the Reynolds number range is wider for which the friction is lower than that of a smooth plate.

But it must not be forgotten that not only the “fresh” coating has to be investigated. It is also important to test the long term qualification after several months of operation. SVAtech simulates this in cooperation with the Laboratory LimnoMar where the test plates are exposed to the North Sea for a certain period of time. After this time the plates are tested again in the friction tunnel.

In summary, the friction tunnel provides friction characteristics of different coatings and textures in an easy and cheap way. The real surface and not only a model of it can be measured over a wide range of Reynolds number. A quick answer regarding the drag reduction and hence fuel savings can be given. The measurements are applicable for a wide field not only in the shipbuilding industry but also for the aerospace or automotive industry.

Author: M. Sc. Rhena Klose, Schiffbau-Versuchsanstalt Potsdam GmbH

The full text can be found in:
R. Klose, R. Schulze: Friction Measurements of Different Coatings in a Friction Tunnel, Proceedings 2nd Hull Performance & Insight Conference, 2017

Calculation Method for the Design of Roll Damping Tanks





Within the framework of the research project ROLLTANK sponsored by the BMWI, a method for improving the determination of the flow processes in roll damping tanks was developed. The improved design of this type of installation can be used with a view to an optimum seakeeping behavior of a ship. The method development was supported by accompanying laboratory tests. In addition to investigations of a laboratory model of a RoPax vessel in the towing tank, further useful data for the validation of the method to be developed was provided through the use of a modified roll system with an electric drive for the excitation of a roll damping tank, isolated from the vessel, to defined sinusoidal vibrations.

Two Frahm tanks and a box tank were designed for testing on the roll system. The experimental program included measurements with sinusoidal excitation, variation of the frequency, roll amplitude, and the fill level of the tank. Differing variants of internals within the tanks were taken into account. The evaluation of the measurements was supported by video recordings and the use of ultrasound probes.

The laboratory tests were carried out in the towing tank with specially designed Frahm and Box tanks with variation of metacentric height, wave height, wave length as well as the sea state in regular and irregular seas. In order to ensure defined boundary conditions for the validation, the tests were carried out in beam seas without any speed.

For further evaluation of the laboratory tests and process development, RANSE calculations were performed for selected cases.

The starting point for the method to be developed was the Morison equation, which was expanded with respect to the parts of a developed vortex system proportional to speed and acceleration. As a result, coefficients of resistance and damping are supplied which then are corrected with empirical formulas depending on the obstruction in the tanks. In the further development, shallow water equations were used, which were extended for the developed non-linear parts. These equations formed the basis for subsequent non-linear tank calculations using the nonlinear strip method ROLF. To this end, the ROLF method was extended with additional tools for tank calculation, which distinguishes it from the STRIP method (linear strip method form the software system UTHLANDE). Extensive simulations were carried out using the new method and were compared with the results of the laboratory tests for their validation.

Extensive validation and comparison with previous methods show that the implementation of the new method in ROLF allows a fast and efficient prediction of the roll damping effect of the tank, especially in the case of large roll amplitudes. For the first time, and in contrast to the STRIP method, effects of parametric roll excitation of ships with roll damping tanks can also be determined. The use of the method for projects in the shipbuilding industry is therefore sensible in areas where minimal roll movements of the ship during operation are important even in extreme seas to minimize the risks to crew and ship. In addition to passenger ships and yachts, the future market is being seen in applications for offshore industrial projects. These include work boats and supply vessels for wind power and offshore installations, where it must be possible to come alongside and land in strong sea states. Lastly and importantly, the use of the procedure contributes to advances in ship safety.

Author: Dr.-Ing. Matthias Fröhlich, Schiffbau-Versuchsanstalt Potsdam GmbH





Propeller Manufacturing




Various machines are available for the manufacture of propellers, appendages and accessory parts.

Automatic Cycles Lathe UT500

For the production of swivel parts (small batches and individual parts) the automatic cycles lathe UT 500 is available. Through the possibility of free-form programming, for example, propeller nozzles, outlets and other parts that are not purely cylindrical can be produced quickly and efficiently on this machine.

Main Paramaters Automatic Cycles Lathe UT500
Swing Diameter over Bed [mm] 510
Swing Diameter over Cross Slide [mm] 340
Swing in Bed Bridge [mm] 760
Distance Between Centers [mm] 1500
Vertical Travel Distance [mm] 680
Max. Turning Length [mm] 1140
Travel distance bed Bridge (x axis) [mm] 310


5 Axis Milling Machine UNITECH XV620-5AX

A XV 620-5AX 5-axis milling machine is available for machining of complex components such as model propellers, shaft struts and propeller hubs. The machine has a working area of 650 x 520 x 480 mm³ with a drive power of 10 kW and is well established in the field of precision engineering.

Main Parameters Milling Machine UNITECH XV620-5AX
x-Axis (Longitudinal Adjustment) [mm] 620
y-Axis (Lateral Adjustment) [mm] 520
z-Axis (Support Vertical Adjustment) [mm] 510
Tool Fitting (DIN 69871) Taper Shank SK40
Input Power at S1 100% [kW] 10
Torque at S1 100% [Nm] 64
RPM Range [min-1] 0 …12000


Milling Machine UNITECH VMC1200

The UNITECH VMC1200 milling machine serves to produce components made of metal. This is characterised by its large working area of 1000 x 520 x 480 mm³. The 4th axis, simultaneously controlled, attachments allow for the production of components (drive housings) that must be pivoted during processing.

Main Parameters Milling Machine UNITECH VMC1200
x-Axis (Longitudinal Adjustment) [mm] 1000
y-Axis (Lateral Adjustment) [mm] 520
z-Axis (Support Vertical Adjustment) [mm] 420
Tool Fitting (DIN 69871) Taper Shank SK40
Input Power at S1 100% [kW] 16
Torque at S1 100% [Nm] 60
RPM Range [min-1] 0 …15000


Open Water Test Dynamometer

Main Parameter
H29 H39
Propeller thrust T<max [N] 400 1000
Propeller torque Qmax [Nm] 15 55
Propeller R.P.M. nmax [s-1] 60 60
Max. Propeller Shaft Inclination [°] 30 30


Main Parameter
R25 R31 R73 R40
Propeller Thrust Tmax [N] 100 250 600 150
Propeller torque Qmax [Nm] 4 10 30 6
For propeller open water tests in the towing tank the following dynamometer types are mainly used: H29 and H39 from Kempf & Remmers. Both dynamometers measure the thrust and torque of the propeller. On both devices, a measuring balance for the thrust nozzle can also be mounted. The H39 can be equipped with a shaft which permits the measurement of the lateral forces of the propeller.

The dynamometers are capable for experiments with shaft inclination.

Open Water Carriages FK1, FK4

The open water carriages FK1 and FK4 offer the possibility to perform tests with internal propulsion dynamometers for ship models. Custom dynamometers from Kempf and Remmers are used for the measurement range and for the FK4 carriage, the counter rotating dynamometer R40 from Kempf & Remmers is used. A measurement balance for nozzles can also be mounted on both devices.