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ABSTRACT

The present article investigates the possibility
of an efficient numerical investigation of higher-order
hull pressure fluctuations. A hybrid method consisting
of the panel code panMARE coupled with a RANS
solver and the in-house code VoCav2D for the simula-
tion of the tip vortex cavitation dynamics is presented.
The tip vortex is found to contribute to higher-order
pressure fluctuations, i.e. pressure fluctuations occur-
ring with up to five times the blade frequency. In a nu-
merical study, the dynamical behaviour of a single 2D
vortex segment is investigated by means of VoCav2D.
The propeller of a container vessel is then analysed
by the hybrid method and the results are compared to
those obtained by model tests in a cavitation tunnel.

Keywords

Propeller-induced Pressure Fluctuations, Tip Vortex
Cavitation, Numerical Cavitation Models

1 INTRODUCTION

For conventional propellers, cavitation is
known as the origin of numerous problems, such as
noise emission, vibratory excitation of the shell plat-
ing in the aftship region as well as erosion of propeller
blades and manoeuvring devices. Thus, minimising
propeller cavitation is highly desirable. However, mea-
sures aiming to reduce cavitation often lead to losses of
propulsive efficiency, see for example Glower and Pa-
tience (1979). As a consequence, a major aspect of the
propeller design process is finding a good compromise
between these two conflicting demands. This warrants
the need for efficient numerical tools able to predict
the cavitation behaviour of a propeller.

The aim of this paper is to present an efficient
numerical tool for investigating hull pressure fluctua-
tions induced by conventional cavitating propellers. It
is well known that the periodic growth and shrinkage
of coherent sheet cavitation structures on the blades of
a propeller operating in the non-uniform wake field of
a ship is – apart from the finite blade thickness and the
changing blade load – the biggest contributor to first-
order pressure fluctuations, i.e. fluctuations occurring

with blade frequency. Nowadays, various day-to-day
simulation approaches have proven to be suitable for
a numerical prognosis of these first-order fluctuations.
These approaches can be classified into two groups:
(1) approaches where a method based on potential the-
ory is applied to calculate the unsteady pressure field in
the aftship region, and optionally a viscous finite vol-
ume method (FVM) may be used as an auxiliary tool,
and (2) purely FVM-based viscous flow approaches.

Abels (2006) uses a vortex lattice method
containing a model for sheet cavitation and a pre-
scribed effective wake field for determining hull pres-
sure fluctuations. The method presented by van Wi-
jngaarden (2011) consists of applying a RANS solver
for the prediction of the nominal wake field and per-
forming a subsequent conversion to the effective wake
field. Using this as background flow, the instation-
ary propeller load and the varying extent of propeller
sheet cavitation are simulated by a boundary element
method based on the assumptions of incompressible
potential flow. Hull pressure fluctuations and radiated
far field sound are analysed by an acoustic scatter-
ing method based on the Kirchhoff-Helmholtz integral
equation. Berger et al. (2013) employ a direct cou-
pling in the time domain between a RANS solver and
a boundary element method for incompressible poten-
tial flow. In the potential flow domain, the propeller
and the aft part of the hull are considered and the pres-
sure fluctuations on the hull can be directly evaluated.
The applied boundary element method is able to treat
sheet cavitation on the blades.

The advantage of these exemplary ap-
proaches of group 1 is their computational efficiency.
However, as more than one method is involved, inac-
curacies and additional effort due to the presence of
interfaces may become a problem. Purely FVM-based
methods (group 2) do not have this disadvantage – al-
beit at the cost of a higher computational effort. Such a
purely FVM-based simulation has been carried out by
Paik et al. (2013), for example. In order to model cavi-
tation, a single-fluid two-phase mixture flow approach
is used in their simulations.
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Figure 1: Model test observations (model scale conditions; inverted colours; see Section 5 for propeller data): Cavitating
propeller of a container vessel in six angular positions (from top left to bottom right: 350◦, 0◦, 10◦, 20◦, 30◦ and 40◦, see Fig.
2) passing the wake peak in the 12 o’clock position; extensive sheet cavitation interacting with the cavitating tip vortex.

When second or higher-order fluctuations are
considered, numerical methods often exhibit devia-
tions between the simulation and the experiment. The
incomplete representation of the cavitating tip vortex
is regarded as one of the reasons for the unsatisfactory
results (van Wijngaarden, 2011). More recently, Fu-
jiyama (2015) performed a similar numerical study to
Paik et al., but with more attention paid to a better res-
olution of the propeller tip vortex region. The results
reveal a good agreement with the experimental data for
the first and second-order pressure fluctuations and in-
dicate the importance of the cavitating tip vortex. Ob-
viously, the computational effort for capturing the cav-
itating tip vortex by a viscous FVM-based approach is
very significant and attempts have been made to ad-
dress the problem of tip vortex cavitation modelling
by potential theory-based methods.

One of the first steps have been made by Huse
(1972) and Weitendorf (1977). They examine the pres-
sure fluctuations induced by propeller cavitation which
is represented by a source-sink distribution. In the
work of Huse, the diameter of the vortex cavity is as-
sumed to be a small constant portion of the propeller
diameter. Not surprisingly, the contribution to hull
pressure fluctuations of a cavitating tip vortex mod-
elled in such a way is almost zero. Weitendorf con-
siders the fluctuations of the cavitation radius in his
calculations. The amplitudes and the radius have been
determined experimentally. In doing so, he is able to
demonstrate that the cavitating tip vortex contributes
significantly to higher-order pressure fluctuations. Lee
(2002) has enhanced a boundary element method by
introducing additional panel elements along the tip

vortex. The shape of the vortex cavity is then deter-
mined in an iterative manner until additional adequate
boundary conditions on the cavity surface are fulfilled.
However, no results with respect to pressure fluctua-
tions induced by the cavitating vortex have been pub-
lished by the author. Szantyr (2006) as well as Kane-
maru and Ando (2015) consider discrete segments of
the cavitating tip vortex and make use of the Rayleigh-
Plesset equation in order to calculate the dynamical
behaviour of the segments. The driving pressure field
is obtained by a vortex model and the induced pres-
sure fluctuations are obtained under the assumptions
of incompressible potential flow. In an earlier work,
Ligneul (1989) also applies a Rayleigh-Plesset type
equation for determining the unsteady cavitation ra-
dius; however, he considers the compressibility of the
fluid when he calculates the radiated pressure distur-
bances.

The assumption made in this paper is that
– for conventional propellers – higher-order pressure
fluctuations are influenced by the dynamical behaviour
of the cavitating tip vortex, which makes it necessary
to develop a model for tip vortex cavitation. The paper
is organised as follows: After some theoretical con-
siderations and order-of-magnitude estimations in Sec-
tion 2, the overall simulation process and in particular
the tip vortex cavitation model are presented in Sec-
tion 3. A preliminary study on the basis of generic test
scenarios is then carried out (Section 4) and a propeller
design is investigated with respect to induced hull pres-
sure fluctuations (Section 5). The findings of the paper
are discussed in Section 6.
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2 THEORETICAL CONSIDERATIONS

Usually, propeller-induced pressure fluctua-
tions are evaluated in the frequency domain and two
parts of the spectrum of cavitation noise are distin-
guished: (1) discrete harmonic components of the am-
plitude spectrum occurring at multiples j = 1,2, . . . of
the blade frequency nnz (n is the rate of revolution and
nz the number of blades) and (2) broadband compo-
nents spread over the whole frequency range. Typi-
cally, the broadband part exceeds the discrete compo-
nents in magnitude when higher frequencies are con-
cerned. In this work, frequencies in the range of, say,
nnz to 5nnz are considered, i.e. up to the 5th order.
Fluctuations at discrete frequencies with j ≥ 2 are re-
ferred to as higher-order pressure fluctuations here. A
widely accepted explanation for the existence of the
discrete components at frequencies jnnz is the peri-
odic volume variation of cavitation structures on the
propeller and its vicinity. The origin of the broadband
part is assumed to be the random violent collapse of
cavitation fragments (Bark and van Berlekom, 1978)
and the deviation from perfect periodicity which can
be observed under real conditions (Baiter, 1992). This
is the classical understanding of cavitation noise and
although a holistic explanatory model has been offered
by Baiter et al. (1982), it serves as a sufficient basis for
the following discussion.

Figure 2: Global (left) and propeller-fixed (right) co-
ordinate system used in this work, view from behind.

Several aspects of propeller cavitation and the
resultant pressure fluctuations are reviewed by Kuiper
(2001), van Terwisga et al. (2006), van Wijngaar-
den et al. (2005) as well as Carlton and Fitzsimmons
(2004). Having the essential conclusion of these works
in mind, the model test observations depicted in Fig. 1
shall be commented upon. The propeller is designed
for a container vessel and shows a typical cavitation
behaviour for this type of propeller. Before entering
the zone of the highest velocity deficit at 0◦, sheet cav-
itation arises between r/R = 0.7 and r/R = 0.95. A cav-
itating leading edge vortex can be observed merging
with the cavitating tip vortex. Approaching the angular
position 10◦, the zone of sheet cavitation grows and the
leading edge vortex gradually disappears in the sheet
cavitation zone. The cavitating tip vortex gains size

and appears to be a continuation of the sheet cavitation
at the blade tip. In the position 20◦, the sheet cavita-
tion gets more pronounced and the spanwise extent be-
comes larger. After leaving the wake peak zone (30◦),
the sheet cavitation exceeds the trailing edge and dis-
integrates. Fragments of the formerly coherent sheet
cavitation structure seem to migrate into the tip vortex.
Also visible – albeit weakly – are remnant parts of the
re-entrant jet vortex interacting with the tip vortex.

Certainly, the complexity of the problem be-
coming apparent in Fig. 1 cannot entirely be addressed
by the numerical method developed in this work and
some simplifications have to be made in order to make
the problem accessible to a numerical treatment. This
is discussed in Sections 3 and 6.

From experience, the pronounced growing
and shrinking of sheet cavitation on the blade shown in
Fig. 1 will contribute predominantly to pressure fluctu-
ations of the first harmonic order and to a minor degree
higher-order fluctuations. However, what is the role of
the cavitating tip vortex? An order-of-magnitude esti-
mate shall answer this question. The maximum bound
blade circulation Γb of a propeller with the diameter D
can be approximated by:

Γb ≈
1
κ

32
π2

kt

nz
nD2, (1)

where κ = 1.7...1.9 depending on the blade shape and
kt is the thrust coefficient (Isay, 1991). The cavitating
tip vortex can be roughly approximated by an inviscid
line vortex of the strength Γb, for which the equilib-
rium cavity radius rc,eq is given by (Franc and Michel,
2005):

Γ2
b

8π2r2
rc,eq

[
1−
(

rc,eq

rD

)2
]
=

p∞− pc

ρ
, (2)

where p∞ is the ambient pressure, ρ the density of
the fluid, pc the pressure in the cavitating core (here
pc = pv with pv vapour pressure) and rD is the outer
boundary of the flow domain, see Section 3.4. The
period of oscillation Tc = 1/fc of such a line vortex
performing a small oscillation around the equilibrium
cavitation radius is:

Tc =
4π2r2

c,eq

Γb

√
ln
(

rD

rc,eq

)
, (3)

see also Franc and Michel. Combining Eqs. (1), (2)
and (3) leads to the ratio between the oscillation fre-
quency fc of the cavitating vortex and the blade fre-
quency nnz:

α ≡ fc

nnz
=

1
ε

σn

kt
. (4)

Here, σn = 2(p∞− pv)ρ−1n−2D−2 and all constants
are included in ε = 2.7, for which rD/rc,eq = 10 and
κ = 1.8 have been assumed. For a propeller oper-
ating at kt = 0.190 and σn = 1.8, the ratio becomes
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Figure 3: Principle of the simulation tool developed in this work.

α = 3.5. For distances d � rc,eq, the pressure distur-
bance pc caused by a vibrating cavity is pc (t)∝ d−1V̈c,
where Vc (t) is the cavitation volume, see for exam-
ple Isay (1989). Consider a segment of the cavitat-
ing tip vortex of the length ds = 1. For small oscilla-
tions rc (t) = ℜ [rc0 + r̂c exp(i2π f t)], i2 = −1, around
rc0, a linear approximation can be made and V̈c ∝

ℜ
[

f 2r̂c exp(i2π f t)
]
, i.e. the pressure disturbance has

the same frequency as the radius variation. For greater
amplitudes r̂c, additional components fluctuating with
2 f will arise.

The rule of thumb given by Eq. (4) assumes
uniform tip vortex characteristics at any time for a
given propeller. This condition, however, is not met
for a propeller operating in inhomogeneous inflow: the
bound blade circulation Γb varies continually depend-
ing on the blade load. Furthermore, the tip vortex un-
dergoes a roll-up process. Thus, the strength of the
tip vortex structure generally does not become equal
to the bound blade circulation immediately but grad-
ually increases from an initial value until it reaches a
value close to the bound blade circulation. As a con-
sequence, the cavitating tip vortex does not induce a
pressure disturbance at only one frequency fc; rather,
it is a range of frequencies around fc, and the pres-
sure signal observed at a fixed point which is induced
by a single passing tip vortex cavity may be written as∫

ℜ [STV (ω)exp(iωt)]dω , where STV (ω) is the am-
plitude spectrum of the pressure signal spread over a
range around the angular frequency 2π fc. In order to
obtain the pressure signal which is generated by a nz-
bladed propeller rotating with n, the signal is given by
a periodic summation:

pc =
nz−1

∑
k=0

∫
ℜ

[
STV (ω)exp(iωt)exp

(
iω

k
nnz

)]
dω.

Since exp
(
iωkn−1n−1

z
)
= 1 for ω = j2πnnz, j =

1,2, . . . , those components in STV (ω) occurring with

multiples of the blade frequency nnz will experience
an amplification.

3 CALCULATION METHOD

The novel hybrid approach presented in this
paper consists of three components, see Fig. 3. It
attempts to break down the otherwise very complex
problem of simulating a cavitating propeller in un-
steady inflow into a number of simple problems:

(1) For determining the effective wake field and the
simulation of the propeller tip flow, the RANS
solver ANSYS CFX (Section 3.1) is used.

(2) The calculation of the unsteady propeller load
under consideration of sheet cavitation is carried
out using the in-house panel code panMARE
(Section 3.2). Furthermore, propeller-induced
pressure fluctuations are estimated by means of
panMARE.

(3) For the simulation of the dynamical behaviour
of the cavitating tip vortex, the in-house code
VoCav2D consisting of a model for two-
dimensional axisymmetric vortical cavitating
flow is employed (Section 3.4).

As indicated in Fig. 3, it is necessary to link the differ-
ent components. In order to obtain the effective wake
field, a coupling approach based on the exchange of
body forces is used (Section 3.3). In order to embed
the tool VoCav2D into the overall simulation proce-
dure, the tip vortex cavity is understood as an elon-
gated quasi two-dimensional structure which is gov-
erned by a few adequate parameters describing the am-
bient vortical flow. These parameters are extracted
from the propeller tip flow which is analysed by means
of ANSYS CFX. This is described in detail in Section
3.5. The effect of the cavitating tip vortex on the pres-
sure fluctuations induced by the propeller is captured
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by means of the panel code panMARE. An additional
distribution of potential sources placed on the tip vor-
tex axis is supposed to capture this effect.

Fig. 2 shows the coordinate systems used
throughout the paper. The global coordinate system
is fixed to the ship with x = (x,y,z). However, some
of the mathematical formulations are given in a body-
fixed coordinate system X = (X ,Y,Z) rotating with the
propeller.

3.1 RANS Solver ANSYS CFX

For the viscous flow calculations necessary to
obtain the effective wake field and for the accurate de-
termination of the propeller tip flow, the commercial
RANS solver ANSYS CFX is applied (ANSYS, 2014).

The governing equations describing the be-
haviour of the flow are the equation of continuity:

∇ ·u = 0, (5)

and the momentum conservation equation for three-
dimensional turbulent flow:(

∂

∂ t
+u ·∇

)
(ρu) =−∇p+∇ · (τ + τT )+ f. (6)

In Eqs. (5) and (6), the variable u denotes the
Reynolds-averaged velocity, p the Reynolds-averaged
pressure, τ the Reynolds-averaged molecular stress
tensor and τT the Reynolds stress tensor due to the
Reynolds-averaging, whose components are approxi-
mated by appropriate turbulence models. f is a vol-
ume specific force source term and ρ the density of
the fluid.

In order to analyse the influence of cavitation
on the flow details near the propeller tip, the cavitating
flow is regarded as two phase flow and a mixture model
is applied to approximate cavitation effects, see Bakir
et al. (2004). The mixture density becomes a new vari-
able and the system of equations is closed by an addi-
tional equation for the transport of the volume fraction
between water •l and vapour •v with a right-hand side
production term for the liquid phase Ṡl . It is assumed
that the production of the liquid phase and the vapour
phase are related by Ṡl = −Ṡv and the vapour produc-
tion can be approximated in a semi-empirical manner
making use of a truncated form of the Rayleigh-Plesset
equation:

Ṡv ∼ Fc
√
|pv− p| sgn(pv− p) , (7)

with pv being the vapour pressure of water, Fc = 50
for pv− p > 0 and Fc = 0.01 for pv− p < 0 taking into
account that vaporisation usually happens much faster
than condensation.

For the numerical solution of the equations
governing the viscous cavitating flow under consider-
ation of appropriate boundary and initial conditions,

ANSYS CFX uses a finite volume method which can
be applied for both structured and unstructured nu-
merical grids. Fluxes through the surfaces of volume
elements are interpolated by the ANSYS CFX High
Resolution Scheme. For the discretisation of time, a
second-order backward Euler scheme is applied. Usu-
ally, the flow problem is solved in global coordinates
(x,y,z); however, when the propeller tip flow is anal-
ysed, it becomes advantageous to consider the problem
in a propeller-fixed coordinate system (X ,Y,Z). Ad-
ditional forces will then arise which are added to the
source term f of the momentum conservation equation.

3.2 Panel Code panMARE

The unsteady propeller load and effects of
sheet cavitation as well as the propeller-induced hull
pressure fluctuations are simulated by means of the in-
house code panMARE, see Bauer and Abdel-Maksoud
(2012). The method uses source and dipole distribu-
tions on the body surfaces and the panels are modelled
as low-order flat quadrilateral elements with a constant
source and dipole distribution over one panel. A de-
tailed description of the underlying theory is given by
Katz and Plotkin (2001).

The underlying sheet cavitation model is able
to simulate partial sheet cavitation on the suction and
on the pressure side of the propeller blades. For more
information about the model, see Vaz (2005) and Fine
(1992). The algorithm for determining sheet cavitation
is based on a partially non-linear approach where the
boundary conditions for the cavity sheet are applied
not on the exact cavity surface but on auxiliary body
surfaces.

3.2.1 Unsteady propeller flow

The domain of potential flow is named Ω and
initially only contains the propeller •P. It is assumed
that the total velocity field V in Ω can be regarded as
a superposition of the undisturbed flow V0 and the ve-
locity field V+

P induced by the propeller, which is con-
sidered to be incompressible and irrotational. Hence,
a velocity potential ΦP exists for V+

P with V+
P = ∇ΦP

and:

V = V0 +∇ΦP. (8)

The problem is formulated in the body-fixed co-
ordinate system (X ,Y,Z), which implies ∇ =
(∂/∂X, ∂/∂Y , ∂/∂Z). In the general case, V0 = V∞+Vmot
is the combination of an inhomogenous inflow (effec-
tive wake field) V∞ and velocities Vmot due to the ro-
tation of the propeller.

Because of the assumptions made, the gov-
erning flow equations simplify to Laplace’s equation
for the potential Φ and Bernoulli’s equation for the
pressure p:

∇
2
Φ = 0, (9)
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and:

p+
1
2

ρ|V|2 +ρ
∂Φ

∂ t
+ρgz = pref +

1
2

ρ|V0|2, (10)

with pref being a suitable reference pressure and Φ =
ΦP. For a lifting and partially cavitating body, the
boundary S = ∂Ω is divided into the surface of the
body SB (the cavitating part is denoted as SBC and the
wetted part is SB \ SBC ), the surface SW representing
the trailing wake propagating from the trailing edge
of the body and the virtual surface S∞ at infinity. For
an arbitrary point X0 ∈ Ω, the potential Φ resulting
from a distribution of sources σ = σ (X) and dipoles
µ = µ (X) on SB and dipoles on SW can be obtained
by: Green’s third identity:

Φ(X0) =
1

4π

∫
SB∪SW

µ∇

(
1
d

)
·ndS− 1

4π

∫
SB

σ

d
dS,

(11)
where n = n(X) is the normal vector of the surface
element dS and d = ‖X−X0‖. For X ∈ SB ∪ SW the
following holds:

σ =−∇Φ ·n and µ =−Φ. (12)

In order to obtain a physically meaningful potential
and velocity field, boundary conditions have to be ful-
filled on SB, SW and S∞:

(1) With growing distance to the propeller, the in-
fluence of the induced velocities must decrease
and finally vanish:

V+
P = ∇ΦP = 0, ∀X ∈ S∞. (13)

The general solution given by Eq. (11) fulfills
this condition inherently.

(2) On the surface SB \SBC of the solid body, the im-
permeability condition is applied, stating that no
flow is allowed to penetrate the surface:

V ·n = (V0 +∇ΦP) ·n = 0, ∀X ∈ SB \SBC .
(14)

(3) On the wake surface SW , the Kutta condition is
applied to model the vorticity:

∆p = 0, ∀X ∈ SW , (15)

where ∆p = p+− p− is the pressure jump be-
tween the pressure value on the upper and lower
side of the trailing wake. Fulfilling the physical
Kutta condition (15) in a direct manner requires
an iterative solution procedure. In order to sim-
plify the calculations, Morino’s Kutta condition
is applied:

µW = µu−µl , (16)

defining the relation between the dipole
strengths of the upper and lower side of the

trailing edge and the dipole strength of the wake
surface directly behind the trailing edge. This
linearisation holds if the flow direction is per-
pendicular to the trailing edge.

(3) On the cavitating parts of the propeller surface
SBC the kinematic boundary condition is postu-
lated:

D
Dt

F(η(s1,s2, t),s3) = 0, ∀s ∈ SBC , (17)

where η is the cavity thickness and
F(η(s1,s2, t),s3) = s3 − η(s1,s2, t) is a func-
tion for the cavity shape. The variables s1,s2
and s3 are the coordinates of the local non-
orthogonal coordinate system of a panel element
(Vaz, 2005).

(4) The second condition used to describe the
physics of sheet cavitation on SBC is the dynamic
boundary condition:

p = pv, ∀x ∈ SBC , (18)

where pv is the vapour pressure of water. By us-
ing Bernoulli’s equation, the dynamic boundary
condition can be transformed in a Dirichlet-like
formulation for the velocity potential µ on the
cavitating part of the body (Bauer and Abdel-
Maksoud, 2012).

The spatial discretisation of the surfaces by
means of flat quadrilateral panels results in a set of
linear equations for the unknown source and dipole
strength, which can be easily solved numerically by
the Gauss method. For the time discretisation, a first-
order backward Euler scheme is applied.

In order to account for the wake roll-up, the
wake surface SW has to be aligned along the stream-
lines of the velocity field V in an iterative manner.
This, however, entails a huge computational effort, es-
pecially if the discretisation of the wake surface is fine.
Alternatively, the shape of the surface SW can be pre-
scribed and considered to be indeformable during the
simulation.

3.2.2 Determination of hull pressure fluctuations

To determine the hull pressure fluctuations p̂,
the unsteady flow on the hull surface SH has to be sim-
ulated.

For the velocity U on the hull •H , the un-
steady disturbance potential induced by the propeller
ΦP, including the influence of sheet cavitation and the
unsteady disturbance potential ΦTV due to the cavitat-
ing tip vortex, are considered. The latter is to be deter-
mined by the method described in Section 3.4. Hence:

U = ∇(ΦP +ΦTV +ΦH) , (19)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂ z) in the global coordinate
system and ΦH is the disturbance potential of the hull

6



which is to be determined. Similar to Eq. (14), the
impermeability condition for the hull reads:

U ·n = ∇(ΦP +ΦTV +ΦH) ·n = 0, ∀x ∈ SH . (20)

It is assumed that the hull is a non-lifting body and
there is no need to model shed vorticity. By means of
the panel method, a distribution of sources and dipoles
satisfying Eq. (20) is found on the hull surface, and
using a linearised form of the Bernoulli equation the
following pressure fluctuations are yielded:

p̂ =−ρ
∂ (ΦP +ΦTV +ΦH)

∂ t
, x ∈ SH . (21)

3.3 Body Force Coupling Algorithm

For a precise estimation of the propeller
loads, the interaction between the viscous flow around
the aftship and the propeller has to be captured. In
this work, the task is carried out by body force cou-
pling between the panel method panMARE and AN-
SYS CFX, an approach that has been well established;
see Greve et al. (2012), Choi and Kinnas (2003) or Za-
wadzki et al. (1997), for example.

The mapping algorithm involved is able to
convert the pressure distribution on the blades to
volume-specific body forces and has been imple-
mented in ANSYS CFX user coding. It can handle
both structured and unstructured meshes and takes into
account the propeller shape, including pressure and
suction side of the blades. For the moment, the no-
tation of the theory in a continuous form will be aban-
doned and a discretised form will be used instead. In
every time step t[i], the algorithm performs two steps;
see the left part of Fig. 3 for an illustration.

Step 1. In the first step, the viscous flow
solver is used to calculate the effective wake field of
the ship. For this purpose, the velocity distribution
u is extracted for an adequate number of reference
points xref, j on a circular plane located 0.1D upstream
of the propeller position. Because of the body forces
applied, this velocity distribution is affected by the
induced velocities of the propeller U+

P = ∇ΦP with
∇ = (∂/∂x, ∂/∂y, ∂/∂ z), see previous section. In order to
obtain the effective wake field of the current time step
t[i], the induced velocities have to be subtracted. The
effective wake field is then used as reference velocity
V∞ for the panel method panMARE:

V∞

(
t[i]
)
≈ u

(
t[i−1]

)
−U+

P
(
t[i−1]

)
, (22)

for xref, j. Since the induced velocities for the current
time step are unknown, the values from the previous
step t[i−1] are used for an approximation.

Step 2. The second step involves the dis-
tribution of equivalent body forces in the domain of
viscous flow. For each time step, the panel method

panMARE provides the center xk and the four ver-
tices xc,l,k, l = 1, ...,4 of each panel k. The area Ak,
pressure pk and the normal vector nk yield the force
Fk = pkAknk +Ffr,k acting on the panel. Ffr,k is an em-
pirically estimated friction force.

The volume mesh used by the RANS solver
ANSYS CFX consists of a number of control volumes
dVm surrounding the grid vertices xm.

First, the mesh near the propeller is analysed
and an equivalent cell radius rs,m is assigned to each
control volume dVm:

rs,m = β
3
√

dVm, (23)

where β = 1.0...2.0 is a model parameter regulating
how sharp the propeller shape is reproduced in the vis-
cous flow domain. Knowing rs,m for each control vol-
ume, it is detected which panels k are intersected by
the control volume m. This is done by means of the
following definition:

ak,m =


1 if ‖xm−xk‖ ≤ rs,m∨

‖xm−xc,l,k‖ ≤ rs,m, l = 1, ...,4
0 else

. (24)

Furthermore, the number of panels intersected by the
m-th control volume is of concern:

bm =

{
1 if ak,m = 0 ∀k
∑k ak,m else

. (25)

The distribution of body forces fbf,m added to the
source term of the momentum equation (Eq. (6)) is
then obtained by

fbf,m = ∑
k

ak,m

bm

Fk

Vk
with Vk = ∑

m

ak,m

bm
dVm. (26)

The method conserves the momentum introduced in
the flow by the propeller, i.e. the condition

∑
k

Fk = ∑
m

fbf,mdVm (27)

is fulfilled at any time.

3.4 Modelling Tip Vortex Cavitation

For simulating the cavitating tip vortex, a
quasi two-dimensional approximation based on the
idea of Szantyr (2006) and Ligneul (1989) is used. The
tip vortex is split into numerous segments and each
segment is treated separately. The interaction between
the cavitating tip vortices of the particular propeller
blades is neglected. In this context, a vortex segment
is defined as a small axial portion of the tip vortex with
a developed cavitating core and the surrounding vorti-
cal flow, see Fig. 4. The tip vortex flow is assumed
to be axisymmetric and the cavitating core shall have
a well defined circular shape – two fundamental sim-
plifications of the real flow conditions shown in Fig.
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1. In Fig. 4, the segmentation scheme is shown. A
segment k originates at the propeller tip at t = t0,k. The
age of the k-th segment is denoted as t?k and is simply
the time passed since the birth of the segment. Each
segment has a certain position x?k = x?k

(
t0,k, t?k

)
, which

is given by:

x?k
(
t0,k, t?k

)
= x?0,k +

∫ t0,k+t?k

t0,k
vwdt, (28)

with the initial position x?0,k depending on the angu-
lar position of the propeller tip at t = t0,k. vw is the
velocity of the fluid behind the propeller in the coor-
dinate system fixed to the ship. In fact, this velocity
is not constant, but for the purpose of approximating
the position of the cavitating tip vortex it is assumed
that using a constant value is sufficiently precise. For
convenience, vw ≈ (−VS,0,0) with the ship speed VS
is used in the present case and the error introduced is
neglected.

Figure 4: Segmentation of the cavitating tip vortex.

For a constant convection velocity
vw assumed, the element length dlk = dl =

dt
[
(πnD)2 +(vw)

2
]1/2

is constant for all elements and
Eq. (28) reduces to:

x?k (t
?
k ) = x?0,k +vwt?k . (29)

The position s?k relative to the blade tip is the number
of segments upstream of the segment k multiplied with
dl.

Furthermore, two fundamental parameters
describing the vortical flow of each segment are in-
troduced: the circulation Γ?

k = Γ?
k

(
t0,k, t?k

)
and the ra-

dius of the viscous core ra,k = ra,k
(
t0,k, t?k

)
. Both pa-

rameters will grow as the segment travels downstream
starting from an initial value depending on the charac-
teristics of the flow at the propeller tip at t0,k. This is
addressed in greater detail in Section 3.5.

rc,k = rc,k (t) is the time-dependent cavitation
radius of the segment k. Following Szantyr (2006),
or even earlier Weitendorf (1977), the pressure distur-
bance in the flow induced by tip vortex cavitation can
be approximated by a line of potential sources located
at the vortex axis. Each segment k is associated with
an equivalent source σ?

k = σ?
k (t) with:

σ
?
k = πdl

∂ r2
c,k

∂ t
. (30)

The potential induced at a certain distance dk from
such a point source is φ ?

k (t) = −σ?
k (4πdk)

−1 and the
overall potential induced by the pulsating tip vortex
cavity is:

ΦTV (t) = ∑
k

φ
?
k (t) , (31)

which can be introduced into the potential flow model
of the panel method panMARE, see Eq. (21). Com-
pressibility is neglected by this approach, which is jus-
tified by the relatively low frequencies considered in
this work.

So far, the framework for the vortex model
has been given: numerous independent segments ar-
ranged at the vortex axis and being convected down-
stream by the flow. The approximative relation be-
tween the fluctuating cavitation radius rc,k of each seg-
ment k and the resulting potential ΦTV is known, but
the problem remains how to calculate rc,k (t). The in-
house code VoCav2D is thus applied. It calculates the
vortical cavitating flow under the assumption of two-
dimensionality, i.e. no interaction between two adja-
cent segments is considered and axial symmetry is as-
sumed. Are these conditions given for the tip vortex
flow of a propeller?

For most conventional propellers, the cavitat-
ing tip vortex is a well-defined flow structure which
can be clearly distinguished from the ambient flow.
This becomes manifest in the fact that the circulation
Γb bound at the blade is almost completely concen-
trated in the tip vortex, with the vortex radius being
much smaller than characteristic length dimensions of
the propeller blade. This warrants the separate consid-
eration of the nearly axisymmetric tip vortex flow and
the ambient flow.

Additionally, the tip vortex is an elongated
structure which implies that changes in the axial di-
rection can be neglected. However, Bosschers (2009a)
states that disturbances of the interface between wa-
ter and vapour propagate in the form of Kelvin waves,
and vibration modes different from axisymmetric de-
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flection may arise. Pennings et al. (2015) have car-
ried out a detailed experimental campaign with an el-
liptic hydrofoil in homogenous inflow and they con-
firm the existence of Kelvin waves showing a specific
behaviour of dispersion. This effect can only be ex-
plained by a three-dimensional vortex model. Nev-
ertheless, there are reasons which justify the use of a
quasi two-dimensional approximation: Pennings et al.
do not only show the existence of Kelvin waves on the
cavitating core of a vortex, they also show the possi-
bility of disturbances being convected with the flow.
Furthermore, according to their work, substantial ex-
citement of the relevant breathing mode – i.e. ax-
isymmetric deflection of the cavity surface – happens
at relatively low frequencies and therefore long wave-
lengths. Thus, if the wavelength is considerably large
compared to the cavitation radius, the forces acting be-
tween two adjacent vortex segments become small.

Interestingly, for the case of long wavelengths
λc � rc, Morozov (1974) gives the following asymp-
totic dispersion relation for the frequency ωc = 2πT−1

c
of an axial cavitating vortex undergoing an axisym-
metric perturbation of the cavity interface at ξ = rc,eq:

Tc =
4π2r2

c,eq

Γ

√
ln
(

2
γαrc,eq

)
, (32)

where Γ is the circulation of the vortex and γ denotes
the Euler constant. The dependence on the wavenum-
ber α = 2πλ−1

c is only weak and a relation to Eq. (3)
becomes obvious.

The treatment for every segment is the same
and thus the index k is omitted from now on. For the
axisymmetrical local tip vortex flow with a cavitating
core of the radius rc at its center, it is convenient to use
cylindrical coordinates; in the present work these are
denoted as (ψ,ϕ,ξ ), see Fig. 4. Velocity components
taken into consideration are the circumferential veloc-
ity uϕ and the radial velocity uξ . Integrating the radial
momentum equation from a certain outer boundary ra-
dius rD to the cavitating core radius rc, and making use
of the kinematic relation uξ = ṙcrcξ−1 yields:(

rcr̈c + ṙc
2) ln

(
rD

rc

)
+

rc
2ṙc

2

2

(
1

rD2 −
1

rc2

)
=

1
ρ
(pc− pvtx) ,

(33)

where

pc = pv + pg0

(
rc0

rc

)2n

−2µ
ṙc

rc
− S

rc
, (34)

and

pvtx (rc) = pD∞−ρ

∫ rD

rc

uϕ
2

ξ
dξ , (35)

see Choi et al. (2009) and Gosda (2016), for exam-
ple. In Eqs. (33) and (34), pc is the pressure inside

the cavity, which depends on the vapour pressure pv of
water and the partial pressure pg0

(
rc0r−1

c
)2n of non-

condensable gases with the polytropic index n = 1 for
isothermal expansion. The last two terms in Eq. (34)
are contributions from viscosity µ and interfacial ten-
sion S. pvtx describes the influence of the vortical flow
around the cavitating core; pD∞ is the ambient pressure
far away from the vortex axis at ξ = rD.

Choi et al. (2009) already mention the prob-
lem caused by the appearance of rD as an argument of
the ln-function in Eq. (33) (just as in Eq. (3)). Since
lnx is unbounded for x→ ∞, rD has to be chosen with
caution. In their work, a numerical study is carried
out in order to show the influence of rD on the results.
They suggest using a finite but large value of rD. In this
work, rDrc,eq

−1 & 10 is used in most of the cases. The
influence of rD on the results is investigated in Sections
4.2 and 5.4.

If rc = 0 and ṙc = 0, the distribution of cir-
cumferential velocity uϕ (ξ ) of a vortex emanating
from the tip of a lifting body can be well described by
the Burgers vortex model (Franc and Michel, 2005):

uϕ (ξ ) =
Γ

2πξ

[
1− exp

(
−βξ 2

ra2

)]
, (36)

with the radius of the viscous core ra and the vortex
circulation Γ. β = 1.256 ensures that the maximum
circumferential velocity occurs at ξ = ra. Use of this
relation will be made later.

Two implementations of the method Vo-
Cav2D exist: VoCav2D-f1 with a strong bidirectional
coupling between the radial and the circumferential
momentum equation and VoCav2D-f2, where the in-
fluence of the cavitating core on the surrounding vor-
tex flow is neglected; however, by an enhancement, it
provides the possibility of capturing the influence of
disintegrated remainders of sheet cavitation surround-
ing the tip vortex cavity.

3.4.1 Formulation f1

The circumferential momentum equation can
be casted in the following form (Gosda, 2016):

∂uϕ

∂ t
− µ

ρ

∂ 2uϕ

∂ξ 2 +

[
ṙcrc

ξ
− 1

ξ

µ

ρ

]
∂uϕ

∂ξ
+[

ṙcrc

ξ 2 −
1

ξ 2
µ

ρ

]
uϕ −

fϕ

ρ
= 0,

(37)

where fϕ is the circumferential momentum source
term, which is zero for the moment. Again, use has
been made of the kinematic relation uξ = ṙcrcξ−1.

For the solution of the problem, appropriate
initial and boundary conditions have to be prescribed
(Bosschers, 2009b):

(1) At t = t0, the initial cavitation radius rc0 has to
defined. This can be the equilibrium radius or
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any other value in this range. In all cases ṙc0 is
set to zero.

(2) Furthermore, at t = t0, the velocity distribution
uϕ (ξ ) is initialised. For this purpose, the Burg-
ers vortex model given by Eq. (36) with Γ = Γ?

and ra at t = t0 is applied.

(3) For the solution of the circumferential momen-
tum equation, the boundary condition at ξ = rc
reads:

∂uϕ

∂ r
=

uϕ

ξ
, for ξ = rc, (38)

stating that no shear stresses act across the
liquid-vapour interface.

(4) For ξ ≥ rD, the outer domain radius, the veloc-
ity is thought to behave similarly to a potential
vortex.

Eq. (33) through Eq. (37) form a system of coupled
differential equations which is solved by a procedure
proposed by Chahine (1995): A central finite differ-
ence scheme is used to solve the radial momentum
equation (Eqs. (33), (34) and (35)), and the equation of
circumferential momentum (Eq. (37)) is solved by the
Crank-Nicolson method. Both equations are solved se-
quentially in an iterative manner, see (Gosda, 2016) for
details.

Due to the roll-up process, the circulation of
a vortex segment is not constant in general and a pro-
cedure is needed in order to mimic the increase of cir-
culation. In VoCav2D-f1, this is achieved by a manip-
ulation of the source term fϕ in Eq. (37). The approx-
imate relation between the change of circulation ∂Γ?/∂ t

and the source term is given by:

fϕ = ρ
∂Γ?

∂ t
1

2πξ

[
1− exp

(
−βξ 2

ra02

)]
. (39)

To obtain this approximation, Eq. (36) has been com-
bined with ρ∂uϕ/∂ t = fϕ , which is a rigorously trun-
cated variant of Eq. (37) neglecting the influence of
viscosity.

To choose an appropriate time step size, the
expected period of the oscillations is approximated
by Eq. (3). In the present work, the time step size
has been determined so that one period is discretised
by 200 time steps. The spatial domain considered in
the circumferential momentum equation (Eq. (37)) is
[rc,rD]. Since [rc,rD] changes with rc, the equation is
transformed to an invariant grid that consists – in the
present case – of 5000 points in the radial direction,
see Gosda (2016) for details.

3.4.2 Formulation f2

Whereas the f1-formulation enables a strong
coupling between radial and circumferential momen-
tum equations, the f2-formulation only considers the

influence of the vortex flow on the cavitating core. The
vortex flow remains undisturbed by the cavity. For this
purpose, the radial momentum equation (Eq. (33)) is
solved by a fourth-order Runge-Kutta scheme and uϕ

in Eq. (35) is modelled by the Burgers vortex given by
Eq. (36) using Γ = Γ? (t0, t?) and ra = ra (t0, t?). Note
that this vortex model is for non-cavitating flow; how-
ever, it is assumed that cavitation does not change the
vortex structure in a too significant way. The time step
size is chosen similar to the f1-formulation.

In order to capture the influence of bubbles
and fragments originating from the disintegrating sheet
cavity which travel along the tip vortex and finally are
absorbed by the tip vortex cavity (see Section 2 and
Fig. 1), a number of spherical bubbles each having the
radius rb is placed around the cavitating core of each
vortex segment. An illustration of the idealised situ-
ation is given in Fig. 6. The assumption made here
is that the entirety of all bubbles has an impact on the
density ρ of the flow surrounding the cavitating core,
so that pvtx in Eq. (35) changes to:

pvtx (rc) = pD∞−
∫ rD

rc

ρ
? uϕ

2

ξ
dξ , (40)

where ρ? = ρ? (t0, t?) is the density of the fluid which
is reduced by the presence of the bubbles. The bubbles
are released at t = t0 in a zone rB around the vortex
core and the reduced density is then approximated by:

ρ
? = ρ

(
1− ∑m rb,m

2

r2
B

)
. (41)

The choice of rB and the distribution of rb,m is dis-
cussed in the next section.

To determine the bubble radius rb, the spher-
ical Rayleigh-Plesset equation is applied:

rbr̈b +
3
2

rb
2 =

1
ρ
(pb− pvtx (ξb)) , (42)

with pb = pv + pg0
(
rbrb0

−1
)3n. Due to the pressure

gradient ∂ p/∂ξ , the bubbles are carried to the center of
the vortex and a simplified equation of motion adopted
from Abdel-Maksoud et al. (2010) describes how the
bubbles travel from their initial position ξb0 to the core
at ξ = 0. For the motion of the bubble, only radial ve-
locities and forces are taken into consideration, i.e., for
the circumferential direction uϕ,b = uϕ is assumed and
since the vortex flow is described as Burgers vortex,
the radial flow velocity uξ is zero. Hence:

2
3

πρrb
3u̇ξ ,b = FD +Fp +Fv, (43)

where FD is the drag force with:

FD =−CD
ρ

2
πrb

2|uξ ,b|uξ ,b, (44)

10



CD = 24(1+C)Reb
−1 and Reb = ρ|uξ ,b|2rbµ−1, Fp is

the pressure force:

Fp =−2πrb
3 ∂ p

∂ξ
, (45)

and Fv is denoted as the volume force with:

Fv =−2πρrb
2ṙbuξ ,b. (46)

Combining Eqs. (43) through (46) leads to the follow-
ing relation:

u̇ξ ,b =−
3
2
[6(1+C)µ +2ρrbṙb]uξ ,b +2rb

2∂ p/∂ξ

ρrb
,

(47)
where u̇ξ ,b = ξ̈b. Eqs. (42) and (47) can be solved by
the Runge-Kutta scheme similar to the solution pro-
cess of Eq. (33). In the present work, delimiters for
the growth of rb are defined that prevent the bubbles
from unphysical strong growth when approaching the
core. Once a bubble reaches the core, the bubble will
be eliminated.

3.5 Determination of Initial and Boundary Values for the
Tip Vortex Flow

Up to this point, the numerical model for the
cavitating tip vortex has been described in a general
manner. However, to apply this model to cavitating
propeller tip flows, appropriate boundary and initial
conditions have to be chosen in order to meet the flow
conditions at the propeller tip. The results obtained in
the numerical study described in Section 5 will be an-
ticipated here for a discussion of the problem. Fig. 5
shows the flow details at the tip of the propeller intro-
duced in Section 2 and simulated by the RANS method
ANSYS CFX. For non-cavitating flow conditions, a
compact and clearly discernible tip vortex can be seen.
The pressure distribution shown at planes perpendic-
ular to the vortex axis indicates axisymmetry of the
flow.

When cavitation takes place, this has a sig-
nificant influence on the flow conditions at the pro-
peller tip. The tip vortex still has a compact structure;
however, the intensity is lower compared to the non-
cavitating case. This can be seen by inspection of the
pressure isolines in the figure. Furthermore, another
prominent vortex structure arises. This vortex struc-
ture is aligned with the closure of the sheet cavity and
can be identified as the re-entrant jet vortex merging
with the tip vortex. It also could be observed during
the model tests documented in Fig. 1. Directly at the
propeller tip (plane a), the flow is far from being ax-
isymmetric. However, downstream of the closure of
sheet cavitation (plane b), this condition is met again.
Any conclusions drawn from Fig. 5 concerning the
streamwise change of intensity of the tip vortex must
be handled with some care, since, as shown by Hsiao

and Chahine (2008), RANS methods tend to give erro-
neous predictions of the streamwise development of tip
vortices. However, also shown by Hsiao and Chahine,
directly behind the trailing edge, RANS methods are
able to deliver feasible results. This insight leads to
the following procedure for finding adequate input pa-
rameters for the cavitating vortex model.

Figure 5: Simulation results for the tip flow of the
propeller of a container vessel in homogenous inflow
for J = 0.65. Data and conditions are given in Tab. 2.
Top: non-cavitating flow conditions, vortex structures
made visible by the λ2-criterion (see ANSYS (2014))
and pressure distribution at circular planes perpendic-
ular to the vortex axis. Middle and bottom: Cavitat-
ing flow conditions. Extent of sheet cavitation (middle)
and vortex structure (bottom). An inverted colour scale
has been used for the isolines of pressure: the brighter
the colour, the higher the pressure drop towards the vor-
tex center.

3.5.1 Circulation of the vortex

It already has been stated in the previous sec-
tion that the flow of the tip vortex is assumed to be rep-
resentable by the Burgers vortex model given in Eq.
(36). Hence, the tip vortex flow can be described by
two parameters, the circulation Γ and the radius of the
viscous core ra. This parametrisation is adopted for
the flow surrounding the segments of the cavitating tip
vortex, where the circulation of a segment is denoted
as Γ? (t0, t?) and the radius of the viscous core becomes

11



ra (t0, t?). The tip vortex is formed because the trailing
vortex sheet undergoes a roll-up process. This leads
to a circulation of the resulting tip vortex flow gradu-
ally increasing from an initial value Γ? (t0,0) to a value
close to the bound blade circulation Γb (t0) as the seg-
ment travels downstream. Astolfi et al. (1999) sug-
gest a potential law formulation for the increase of the
strength of a tip vortex with increasing distance from
the trailing edge. In this work, the following formula-
tion is chosen:

Γ
? (t0, t?) = Γb (t0)(1− (1− γini)exp(−κt?)) , (48)

where γini is the ratio between the initial circulation
Γ? (t0,0) = Γini of the tip vortex segment and the max-
imum bound circulation Γb (t0). κ is adjusted in a way
that the maximum circulation is reached after a pre-
scribed segment age.

For determining γini, the considered pro-
peller is analysed numerically by means of the RANS
method. Obviously, γini,c = γini,c (J,Re,σ) for cavitat-
ing and γini,nc = γini,nc (J,Re) for non-cavitating flow
will be different. Presuming

γini,c = γini,ncε1ε2, (49)

the procedure is to determine the ratio γini,nc for non-
cavitating flow and the correction factors ε1 (J,σ) =
Γb,ncΓb,c

−1 and ε2 (J,σ) = Γini,cΓini,nc
−1.

The procedure starts with the simulation of
the propeller in homogenous inflow and for non-
cavitating conditions obeying the correct propeller
scale for various advance coefficients J. The distri-
bution of bound circulation can be determined by in-
tegration of the velocity on a closed curve around the
propeller blade at r = const., which is shifted slightly
away from the propeller surface in order to be outside
of the boundary layer. The maximum bound circula-
tion is assumed to equal Γb.

In order to estimate the initial circulation of
the tip vortex Γini,nc in close vicinity of the trailing
edge, the velocity distribution ũϕ and ũξ on a circular
plane of the diameter dp perpendicular to the tip vor-
tex axis is analysed, see Fig. 5. Flow components in
the ψ-direction are not considered. In the following, •̃
is used to distinguish between propeller tip flow quan-
tities obtained by a RANS simulation from those used
in VoCav2D. Although the tip vortex flow is very com-
pact and concentrated, ũϕ and ũξ will be affected by
the ambient background flow and these portions need
to be filtered out. Since dp� D, the background flow
will be almost constant over the whole plane and can
easily be identified, and what remains after filtering is
a distribution of circumferential velocities ũϕ = ũϕ (ξ )
and vanishing radial velocities ũξ . The parameters Γ

and ra of the Burgers vortex are then adjusted, so that:∫ dp/2

0

[
ũϕ (ξ )−uϕ (Γ,ra,ξ )

]2 dξ →min. (50)

For this purpose, a Gauss-Newton algorithm can be ap-
plied. Determining γini,nc = Γini,ncΓ0,nc

−1 for various J
is straightforward then.

For the estimation of the factors ε1 and ε2,
RANS simulations for cavitating flow have to be car-
ried out. The cavitation number σ has to be chosen
appropriately. Eq. (1) states that Γb ∝ ktnD2 and thus
simply ε1 ≈ kt,nckt,c

−1 for all J taken into consider-
ation. Determining ε2 is more complicated. It can
be seen in Fig. 5 that for the non-cavitating case,
the tip vortex is attached to the blade tip (plane a),
Whereas for the case of cavitating flow, a developed
tip vortex with axisymmetric flow emerges from the
closure of the sheet cavity (plane b). Due to the pres-
ence of the cavitating core, the fitting procedure de-
scribed by Eq. (50) will not lead to reasonable results,
since the Burgers vortex (Eq. (36)) is a model for non-
cavitating flow. However, far away from the cavitat-
ing and the viscous core, the flow field behaves like
a potential vortex with uϕ (ξ ) = Γ(2πξ )−1 and this
yields a possibility to determine ε2: a circular plane is
placed on the vortex axis at a position close behind the
closure of the sheet cavitation. In Fig. 5, this corre-
sponds with plane (b). At the same location, a simi-
lar plane is placed in the non-cavitating flow case and
ε2 ≈ uϕ,c (dp/2)

[
uϕ,nc (dp/2)

]−1 might be used as an ap-
proximation.

Figure 6: Idealisation of the cavitating flow near the
trailing edge at the propeller tip.

3.5.2 Initial cavitation radius and bubble distribution

Fig. 6 depicts an idealisation of the cavitation
process near the propeller tip which has been shown in
Fig. 1 and commented in Section 2. Sheet cavitation
extends over wide portions of the propeller blade and
beyond the trailing edge. At a certain point, the sheet
cavitation starts to disintegrate and fragments or bub-
bles broken out of the formerly coherent sheet cavity

12



are swept away by the flow and absorbed by the tip vor-
tex. This process takes place in a mixing zone between
the zone of sheet cavitation and the developed tip vor-
tex cavitation, see Fig. 6. Based on the observation
that sheet cavitation extending downstream the trailing
edge of the propeller blade continuously merges with
the cavitating tip vortex in the mixing zone, a heuristic
solution to the problem of finding the initial cavitation
radius at t = t0 is to postulate:

rc0 = max
{

hcav,cl

2
,rc,eq

}
, (51)

where hcav,cl is the cavity thickness in the closure re-
gion of the sheet cavity.

Formulation f2 allows for the consideration
of bubbles and remaining fragments of sheet cavita-
tion surrounding the tip vortex cavity. The model re-
quires two input parameters: rB defining the region
over which the bubbles are distributed and the distri-
bution of bubbles itself. A reasonable estimate for rB
is the maximum sheet cavitation thickness which leads
to:

rB =
hcav,max

2
, (52)

see Fig. 6. For the initial distribution of bubbles,
a uniform distribution of the initial bubble locations(
ϕb0,m,ξb0,m

)
is expected, whereas for the initial bub-

ble radius rb0,m with m = 1, . . . ,Nb a Gaussian distri-
bution is postulated. The number of bubbles seeded
in the flow around a vortex segment at t = t0 can be
determined if ρ? (t0) and an average bubble radius are
known.

hcav,max and hcav,cl are determined by the
RANS solver ANSYS CFX obeying the correct cav-
itation number σ . The simulations have to be carried
out for an appropriate range of advance coefficients J.

3.5.3 Radius of the viscous core and ambient pressure

The initial radius of the viscous core ra0 de-
pending on the blade load can be adopted from the fit-
ting procedure necessary for the calculation of the ini-
tial circulation ratio γini,nc. Certainly, the presence of
a cavitating core will have an influence on the viscous
core radius; however, for determining ra0, this is ne-
glected. When the f1-formulation is used, the viscous
core will only be used for the initialisation at t = t0
and the model automatically will determine the evo-
lution of the circumferential velocity distribution uϕ .
However, when the f2-formulation is used, uϕ is pre-
scribed by a Burgers vortex (Eq. (36)) which requires
to specify the temporal evolution of the viscous core
radius. A potential law similar to Eq. (48) is applied.

For locations far away from propeller, the
ambient pressure far away from the vortex axis pD∞

equals pref plus the hydrostatic pressure due to the hy-

drostatic head above the vortex segment. In the di-
rect vicinity of the propeller, pD∞ is affected by the
propeller flow. Thus, the ambient pressure pD∞ will
change while the segment travels downstream.

4 DYNAMICS OF A SINGLE VORTEX SEGMENT

In this numerical study, the dynamical be-
haviour of a single cavitating vortex segment is in-
vestigated by means of the method VoCav2D. The
presentation of the results starts with a validation of
the method VoCav2D-f1 using experimental data made
available by Choi and Ceccio (2007). Thereafter, the
behaviour of a vortex segment with increasing circu-
lation is examined and some results obtained by the
f2-formulation are presented.

In Fig. 7, the most important difference be-
tween both formulations of VoCav2D are shown. For
the f2-formulation, the distribution of circumferential
velocity is not affected by the presence of the cavity in
the core of the vortex. However, the f1-formulation
takes this effect into account and the vortex flow is
strongly modified by the radial growth and shrinkage
of the vortex cavity.
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Figure 7: Distribution of circumferential velocity for
a cavitating vortex. Comparison between both formu-
lations of VoCav2D. See Section 4.2 for the mean-
ing of Lvs and Vvs. Γ = 7.0m2/s, ra0 = 0.03m and
rc0 = 0.056m have been used. Other parameters are
listed in Section 4.2.

Nevertheless, within certain limits, the f2-
formulation yields reasonable results which will be-
come apparent within Section 4.2.

4.1 Comparison to experimental data

Choi and Ceccio (2007) carried out a num-
ber of experiments in a cavitation tunnel for the pur-
pose of investigating the growth of cavitation nuclei in
the center of a tip vortex. The results can be used to
validate the method VoCav2D-f1 for cases in which
the radius of the cavity is significantly smaller than
the viscous core radius. In their experiments, vortical
flow was generated by a cambered hydrofoil. Down-
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stream of the foil, a Venturi section was placed around
the tip vortex in order to enforce a change of the am-
bient pressure of the vortex. Laser pulses were used
to create cavitation nuclei at the vortex axis in a con-
trolled manner upstream the Venturi section. The re-
sults depicted in Fig. 8 have been obtained follow-
ing the procedure described by Choi et al. (2009): For
the vortex properties 0.252 m2/s < Γ < 0.302 m2/s and
3.75 mm < ra < 5.15 mm given by Choi and Ceccio,
a nucleus of the size rc0 = 100.0 µm is placed at the
center of the vortex. The outer domain radius is set to
rD = 0.2m and the ambient pressure pD∞ is adjusted
so that the nucleus is in an equilibrium state initially,
leading to a core cavitation number σC0. Then, start-
ing from σC0, the ambient pressure is reduced until the
desired value of σC is reached. The non-dimensional
results shown in Fig. 8 are in good agreement with the
experimental data. The vertical bars in the figure indi-
cate the variation of the results when the vortex param-
eters are changed within the range mentioned above.
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Figure 8: Final radius rc∞ of a small cylindrical bub-
ble placed in the core of a vortex against the core cavi-
tation number σC.

4.2 Vortex segment with a generic increase of circulation

In the validation study, the radius of the vis-
cous core ra was much larger than the radius of the
cavity rc. In the following, the cavity radius is also al-
lowed to be in the range of the viscous core radius or
to exceed it. The study carried out here aims to inves-
tigate the influence of various initial conditions on the
dynamical behaviour of a vortex segment. The values
and quantities used for the study are listed in Tab. 1
and have been chosen to meet the flow conditions oc-
curing at full scale propeller flows. The results were
obtained by using the f1-formulation.

The initial partial pressure pg0 of non-
condensable gases has been set to 5000.0Pa and rD =
0.5m has been used in all cases. In addition to that, all
constants have been chosen according to the proper-
ties of water. Starting from an initial circulation γiniΓb,
the circulation is increased gradually as described by
Eq. (48). Each segment is observed for a duration of

Tsim = 2.0s and κ in Eq. (48) is chosen so that 99% of
Γb are reached after 0.4s.

Table 1: Relevant conditions for the numerical inves-
tigation of the dynamical behaviour of a single vortex
segment.

Characteristics Value
max. circulation Γb m2/s 7.0
ini. circulation ratio γini [-] 0.4, 0.7, 1.0
ini. core radius ra0 [m] 0.01, 0.03, 0.07
ini. cavitation radius rc0 [m] 0.0005...0.1
ambient pressure pD∞ [Pa] 130000.0

The results are brought to a dimension-
less representation of the following length and time
scales: Lvs = ra0,2 for all length quantities and
Tvs = 4π2ra0,2

2Γmax
−1 for all quantities related to

time. Velocities are made dimensionless by Vvs =
2πLvsTvs

−1.
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Figure 9: Exemplary time history of a vortex segment
illustrating the evaluated quantities: (a) 2r̂c∞, (b) rc∞,
(c) Tc∞, (d) 2ζ̂∞ and (e) ζmax. See text for explanations.

In Fig. 9, an exemplary result of the simu-
lation campaign is shown. In particular, the follow-
ing quantities are of greater interest: (a) the amplitude
2r̂c∞ and (b) the average cavitation radius rc∞ as well
as (c) the period Tc∞ at the end of the simulation.

Section 1 mentions that the acceleration of
the cavity volume V̈c is proportional to the pressure
fluctuations induced by cavitation. Hence, the quan-
tity

ζ ≡ ∂ 2r2
c

∂ t2 (53)

is an adequate measure for the pressure fluctuations
caused by the cavitating vortex segment. This quantity
is evaluated by means of (d) the amplitude 2ζ̂∞ at the
end of the simulation and (e) the maximum value ζmax
occurring during the lifetime of the segment. It can be
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observed in Fig. 9 that high values of ζ occur when
the cavitation radius runs through the first minimum
where the curvature of rc (t) is very high.
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Figure 10: Influence of various initial conditions on
the amplitude r̂c∞ of a cavitating vortex segment. Miss-
ing parts of the curve indicate cavity collapse or unsta-
ble results.
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Figure 11: Influence of various initial conditions on
ζ̂∞ for a cavitating vortex segment (see Fig. 9 for the
definition). Missing parts of the curve indicate cavity
collapse or unstable results.

Due to the direct relation between ζ and rc,
Figs. 10, 11 and 12 should be discussed in one context.
All curves exhibit a distinctive minimum where both
the amplitude r̂c∞ is nearly zero and ζ vanishes. The
position of the minimum can be related to the equi-
librium radius rc,eq depending on the respective value
for γini and the conclusion can be drawn that a vortex
segment initialised in an equilibrium state will not con-
tribute to pressure fluctuations in a significant manner.
However, when deviating from the equilibrium state,

oscillations of the cavity will be stimulated. Viscosity
can have an important influence if the radius of the vis-
cous core is equal or greater than the cavitation radius,
see Fig. 10.
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Figure 12: Influence of various initial conditions on
the peak ζmax for a cavitating vortex segment (see Fig.
9 for the definition). Missing parts of the curve indicate
cavity collapse or unstable results.
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Figure 13: Influence of various initial conditions on
the oscillation period Tc∞ for a cavitating vortex seg-
ment (see Fig. 9 for the definition). Missing parts of
the curve indicate cavity collapse or unstable results.

The results for cases with an initial cavita-
tion radius much smaller than the equilibrium radius
have to be interpreted with some caution. The data
shown in Fig. 12 suggest that huge values of ζmax ap-
pear when the initial cavitation radius is chosen sub-
stantially smaller than the equilibrium radius. How-
ever, one has to keep in mind that in these cases rc (t)
starts with a minimum and the cavitation radius will
rapidly spring to higher values which results in a huge
curvature and thus also in high values for ζmax. The
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oscillations stimulated by such a deflection are large,
which results in bigger amplitudes r̂c∞ and ζ̂∞. In real
flows, such a constellation is very unlikely – therefore
the data right of the equilibrium radius are of greater
practical relevance. The results obtained by the f2-
formulation for the case ρ? = ρ are also shown in the
figures. No significant differences occur except for
very small values of rc compared to the viscous core
radius. This becomes relevant when either rc0 is small
or rc approaches small values during the life of a seg-
ment. The latter case explains the differences in the
predicted results for ζmax shown in Fig. 12.

In Fig. 13, the oscillation period Tc∞ of a seg-
ment at the end of the simulation time is shown. The
analytical results obtained by Eq. (3) neglecting the
influence of viscosity describe the lower limit of pos-
sible values for the period Tc∞. The damping effect
of viscosity gets emphasised for large values of ra0.
Furthermore, the f1-formulation predicts a dependency
between the period and the initial cavitation radius rc0.
This is due to the effect that the amplitude of oscilla-
tion is affected by the choice of rc0 and so is the period
of the (non-linear) oscillation.

The average cavitation radius at the end of the
simulation rc∞ depending on the initial value of rc0 is
illustrated in Fig. 14. The results are compared to the
analytically determined equilibrium radius according
to Eq. (2). Similar to the period of oscillation, the
overall growth depends strongly on the selected initial
circulation and the initial cavitation radius. Again, vis-
cosity plays a significant role if the core radius is much
larger than the initial cavitation radius.
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Figure 14: Influence of various initial conditions on
rc∞ for a cavitating vortex segment (see Fig. 9 for the
definition). Missing parts of the curve indicate cavity
collapse or unstable results.

Note that in all cases considered here, the ma-
jor characteristic of the vortex – the maximum circula-

tion Γb – is the same. However, depending on the ini-
tial conditions, the dynamical behaviour of the vortex
cavity can differ in a considerable manner from case to
case. This underlines the importance of finding suit-
able initial conditions when the effect of propeller tip
vortex cavitation on propeller-induced pressure fluctu-
ations is considered.
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Section 3.4 explains that the choice of the
outer domain radius rD can have an important impact
on the dynamical behaviour of the vortex cavity. This
has been investigated as well and the results are pre-
sented in Fig. 15. The average cavity radius rc∞ is
nearly independent of rD. However, all other quanti-
ties are influenced by the choice of rD and the solution
does not converge as rD→ ∞. This is a crucial aspect
of the quasi two-dimensional approach used here. rD
turns out to be a free parameter which has to be chosen
with care.

4.3 Effect of a reduced density around the cavitating core

As described in Section 3.4.2, VoCav2D-f2
is able to consider the influence of bubbles and frag-
ments of the disintegrating sheet cavity surrounding
the cavitating core of a tip vortex. Exemplary results
are shown in Fig. 16. A number of bubbles is dis-
tributed around the cavitating core according to the ini-
tially chosen reduced density ρ?. It can be seen that
the bubbles migrate to the center of the vortex contin-
uously and finally disappear after a certain time. Also
in the figure, the evolution of the cavitation radius is
shown. The reduced density leads to a less pronounced
low pressure zone in the vortex, and as a consequence,
the cavitation radius will experience a stronger con-
traction than the case when no bubbles are present.
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5 CASE STUDY: CONTAINER VESSEL

In this section, a propeller designed by MMG
(Mecklenburger Metallguss GmbH) for a container
vessel is analysed by means of the simulation proce-
dure shown in Fig. 3. The results are compared with
the results of cavitation tests conducted at the facilities
of SVA Potsdam. Relevant dimensions of the vessel
and the propeller are listed in Tab. 2.

Table 2: Main dimensions and properties of the inves-
tigated propeller-hull combination.

Characteristics Value
Propeller FP01362
Type, sense of rot. 1 × FPP, clockwise
Propeller diameter D = 2R [m] 7.750
Number of blades nz [-] 5
Hub ratio dh/D [-] 0.170
Area ratio Ae/( π

4 D2) [-] 0.731
Pitch ratio P0.7/D [-] 0.977
CV3600
Type 3600 TEU container vessel
Length LPP [m] 223.60
Breadth B [m] 32.20
Draught T [m] 11.52
Installation position of the propeller
Tip clearance sH [m] 0.311D
Operation conditions
Rate of rev. n [s−1] 1.735
Ship speed Vs [kn] 23.18
Ship speed Vs [m/s] 11.92
Thrust coefficient kt [-] 0.196
Cavitation number σn0.8 [-] 1.71

5.1 Experimental procedure

The experiments have been carried out in the

Kempf & Remmers K15A cavitation tunnel of SVA
Potsdam with a test section of 2600mm× 850mm×
850mm. A dummy model with a shrunken fore-
ship section has been manufactured and equipped with
pressure transducers in the aftship region above the
propeller. The dummy model with a fitted propeller
and rudder is shown in Fig. 17. Wake screens have
been attached to the model in order to simulate the ex-
pected nominal wake field of the full-scale ship. To
achieve this, the bare hull flow of the real ship has been
simulated by means of a RANS solver in full-scale
conditions and the wake screens have been adjusted
until the measured wake flow of the dummy model
fitted well with the expected full-scale nominal wake
field. In Fig. 18, the nominal wake field of the dummy
model with and without wake screens is compared to
the nominal wake field calculated by means of ANSYS
CFX using the setup described in Section 5.2.

Figure 17: Dummy model of CV3600 with wake
screens (a) and pressure transducers (b).

During the experiments, the flow velocity and
the ambient pressure in the cavitation tunnel have been
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adjusted in order to match the operation conditions of
the propeller given in Tab. 2.
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Figure 18: Comparison between the nominal
wake field of the dummy model with wake screens
(DM110FS), without wake screens (DM110) and a
simulation data obtained by ANSYS CFX. Note that
these simulations have been carried out with the setup
described in Section 5.2.

5.2 Numerical setup

For the investigation of flow details at the
blade tip, RANS simulations with a very high grid den-
sity in the tip region have been carried out. Only a
single blade has been taken into consideration and the
effect of the other four blades has been captured by
using a periodic boundary condition. The numerical
domain is outlined in Fig. 19.

Figure 19: Outline of the inner part of the numeri-
cal grid used for the investigation of flow details at the
blade tip by means of ANSYS CFX. The outer part is
not shown.

It was expected that factors such as grid res-
olution and turbulence modelling would have an im-
pact on the results at the blade tip. In order to investi-
gate this, three mesh densities (9.0Mio., 12.3Mio. and
13.8Mio. cells) have been used. The grid resolution
becomes apparent in Fig. 20. Furthermore, simula-
tions with the SST turbulence model (with and with-
out streamline curvature correction), the k− ε and the

k−ω model have been carried out (ANSYS, 2014).
The used mesh was laid out as structured mesh and the
simulations have been steady state simulations with a
rotating frame of reference.

Figure 20: Grid resolution in the tip vortex region.
Grid variant with 13.8Mio. cells. Pressure isolines in-
dicate the vortex core region.

Figure 21: Computational mesh used for the RANS
simulation of the unsteady viscous aftship flow. The
position of the dark colured cells will vary depending
on time according to the rotation of the propeller.

Figure 22: Viscous velocity field behind the propeller.

The mesh used for the simulation of the un-
steady and viscous aftship flow is shown in Fig. 21.
In the figure, those cells involved in the coupling pro-
cedure described in Section 3.3 are dark coloured and
the shape of the virtual propeller becomes visible. The
unstructured mesh consists of 5.6Mio. cells, whereof
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0.2Mio. are concentrated in the region around the vir-
tual propeller. In Fig. 22, the distribution of axial
velocity at y = 0 obtained later in the simulations is
shown for an exemplary instant of time.

Figure 23: Panel grid used for the simulations with
panMARE.

The surface panel grid used in panMARE
contains the propeller, the trailing wake surfaces and
relevant parts of the hull above the propeller, see Fig.
23. Each blade is discretised by 19× (2 ·26) pan-
els in the radial and chordwise direction, respectively.
840 panels have been used to model the truncated hull
above the propeller. The presence of the rudder is not
taken into consideration.

For the unsteady simulations with panMARE
and ANSYS CFX, the time step size has been set to a
value corresponding to an angle increment of 3.789◦,
which means that every period nnz is divided into 19
intervals. Frequencies up to the 5th blade frequency
are considered here. The present time discretisation
leads to a sampling rate four times larger than the high-
est frequency considered. VoCav2D uses a much finer
time discretisation (see Section 3.4), and interpolation
with respect to time is used to exchange data between
panMARE and VoCav2D. All simulations have been
carried out for full scale conditions. The length of the
cavitating tip vortex has been limited to 0.75πD, i.e.
the cavitating tip vortex is only traced until it reaches
the position of rudder leading edge.

5.3 Flow details at the blade tip

By means of detailed RANS simulations, in-
put data for VoCav2D have been generated. The pro-
cedure is described in Section 3.5. Fig. 24 shows ex-
emplary results for the propeller operating in homoge-
nous inflow at J = 0.65. Obviously, the distribution of
tangential velocity can be described sufficiently accu-
rate by a fitted Burgers vortex. The right diagram in the
figure illustrates the sensitivity of the velocity distribu-
tion on parameters like grid resolution and the applied
turbulence model. The highest impact can be detected
in the region ξ < ra. The uncertainties occurring when

Γini and ra0 are determined using the fine mesh con-
figurations with 12.3Mio. and 13.8Mio. cells are less
than 1% for the circulation and approximately 2.5%
for the viscous core radius. Values obtained by simu-
lations with the coarse mesh (9.0Mio. cells) differ by
appr. 7% from the results with the fine mesh configu-
rations.
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Figure 24: Analysis of the blade tip flow with respect
to initial circulation Γini. Left: comparison between
ũϕ (ξ ) extracted from one exemplary simulation and
fitted uϕ (ξ ,ra,Γ), right: spread of ũϕ (ξ ) depending
on grid resolution and turbulence model used. Pro-
peller FP01362 in homogenous inflow with J = 0.65;
non-cavitating flow conditions.

Figs. 25 and 26 show the input data used
for the simulation of the cavitating tip vortex with Vo-
Cav2D-f2 which have been extracted from the RANS
simulation results as described in Section 3.5.
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Figure 25: γini for the propeller investigated in the
present study. Dashed lines indicate J = const.

ρ?ρ−1 at t = t0 and the factor κ used in Eq.
(48) are not apparent from the RANS simulations. One
has to rely on a reasonable estimate here. For the simu-
lations reported in the next section, κ has been chosen
in a way that 99% of Γb are reached after 0.5 revolu-
tions and ρ?ρ−1 has been initialised with a value of
0.5.
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Figure 26: Left: extent of sheet cavitation on the
blades of the propeller investigated in the present study,
right: radius of the viscous core in close vicinity of the
trailing edge.

5.4 Propeller cavitation and pressure fluctuations

This section focuses on the results of the un-
steady propeller flow, cavitation and propeller-induced
pressure fluctuations. Tip vortex cavitation has been
simulated with VoCav2D-f2. The agreement between
observed and predicted extent of sheet cavitation is ac-
ceptable, see Figs. 27 and 28. It can be seen that the
chordwise extent of sheet cavitation at the blade tip is
somewhat underpredicted by panMARE. A distinctive
wave pattern can be detected when the tip vortex is ob-
served in Fig. 27, which is analysed in more detail in
Fig 29: At t = 0 in the figure, a group of segments
with huge cavitation radii is generated at the trailing
edge s = 0. Obviously, the blade has passed the wake
peak region at this moment. Apparently, this group
is swept away by the flow followed by a group with
smaller cavitation radii.

Figure 27: Cavitation extent obtained by the simu-
lation procedure. Opaque grey zones at the blade tips
denote regions where small bubbles surround the main
tip vortex cavity. The blade position angle is ϕ = 30◦.
Dimensions of the cavitating vortex not true to scale.

Figure 28: Experimentally observed cavitation extent
at ϕ = 30◦ in the wake field of DM110FS; inverted
colours. Dots indicate extent of cavitation.

While being convected downstream by the
flow, the circulation of the tip vortex segments in-
creases and so does the radius of the cavity. The av-
erage radius of the tip vortex cavity for the considered
case is approximately 0.04m. This value is used for
normalising the data in the plots. Thus, Lv = 0.04m.
It can be gathered from Fig. 29 that the maximum
cavitation radius ranges around 0.065m, which can be
considered as a realistic value.
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Figure 29: Shape rc (s) of the tip vortex cavity for three instants of time for the first three-quarter revolution s≤ 0.75πD.

20



0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

10
0k

p̂

f (nnz)
−1

0.0

0.2

0.4

0.6

0.8

1.0

1.2
10

0k
p̂

rDLv
−1 = 6.25

rDLv
−1 = 10.0

rDLv
−1 = 13.75

rDLv
−1 = 16.25

Figure 30: Dimensionless induced pressure fluctua-
tions k p̂ in the frequency domain due to the cavitating
tip vortex for various rD. The observation point is situ-
ated on the ship hull directly above the propeller. Bot-
tom: signal due to a single blade passage, top: periodic
signal.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

10.0 15.0

10
0k

p̂

rDLv
−1

j = 1
j = 2
j = 3
j = 4
j = 5
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ing tip vortex. The vertical line indicates rD = 0.4m
or rDLv

−1 = 10.0, which has been chosen as standard
value in the study presented here.

Finally, the results with respect to propeller-
induced pressure fluctuations are presented in Figs. 32
and 33. The pressure amplitude p̂ is given as dimen-
sionless coefficient kp̂ = p̂

(
ρn2D2

)−1. In Section 4.2,
the influence of rD has been shown for a single vor-
tex segment and it turns out that the influence is not
negligible. It seems thus very likely there is an influ-
ence on the predicted pressure fluctuations induced by
the propeller as well. In Fig. 30, it can be seen how
the pressure disturbance induced by the cavitating tip
vortex of a single blade and the corresponding signal
of the complete propeller are related. With increasing
rD, the hump in the lower part of the figure is shifted
to lower frequencies and the amplitudes get smaller.

The sole cavitating tip vortex oscillates in a frequency
range around 2.5 nnz to 4.5 nnz which is in good agree-
ment with the considerations made in Section 2, where
α = 3.5 has been determined. For the amplitudes at
discrete frequencies jnnz with j = 1,2, . . . , the influ-
ence of rD is shown in Fig. 31.
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Figure 32: Dimensionless induced pressure fluctua-
tions kp̂ in the time domain. The observation point is
situated on the ship hull directly above the propeller.
Bottom: signal due to tip vortex cavitation (TVC), top:
complete propeller.
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Figure 33: Dimensionless induced pressure fluctu-
ations kp̂ in the frequency domain. The observation
point is situated on the ship hull directly above the pro-
peller.

Furthermore, the influence of tip vortex cavi-
tation on the overall pressure signal is depicted in Figs.
32 and 33. The results shown have been obtained using
rDLv

−1 = 10.0, i.e. the radius of the outer domain is
ten times larger than the mean cavity radius. It can be
seen that higher-order pressure fluctuations with j = 3
and j = 4 are not captured by the method if only sheet
cavitation is taken into consideration. The pressure
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signal radiated by the tip vortices of all five blades ex-
hibits distinct peaks at multiples of the blade frequency
which also appear in the pressure signal induced by the
propeller under consideration of sheet and tip vortex
cavitation, see Figs. 30 and 33. Experimental results
are marked by an ∗ in Fig. 33.

6 DISCUSSION OF THE RESULTS

For the given case, the numerically predicted
pressure fluctuations reveal a good agreement with
the pressure fluctuations measured during the cavita-
tion tunnel tests. The question may arise how reli-
able the numerical results and the presented method
are. This will be discussed in the following. Because
only conventional propeller flows as observed in the
present case are considered, special issues such as vor-
tex bursting or vortex–vortex interaction (e.g. between
the tip vortex and the leading edge vortex on the pres-
sure side of the blade) are excluded from the discus-
sion.

The simulation tool introduced in this paper is
a combination of three numerical methods being com-
bined by adequate interfaces. It is assumed that each
method on its own is sufficiently accurate. In the cases
of the commercial RANS solver ANSYS CFX and the
panel code panMARE, this assumption may hold; in
the case of VoCav2D, experimental results provided by
Choi and Ceccio (2007) could be reproduced well for
the case rc,rc0 < ra, although this is not very represen-
tative of the propeller tip vortex flows where generally
rc0 & ra, see Section 5.3.

Furthermore, the full-scale flows considered
here are most likely of a turbulent nature. However,
turbulence is not considered in the flow model of Vo-
Cav2D. Zeman (1995) concludes in his work that tur-
bulence plays a minor role in the far-field (i.e. far be-
hind the trailing edge) evolution of a trailing vortex.
The effect of turbulence on the vortex flow directly be-
hind the trailing edge is not clear and has not been ex-
amined in the present work.

The rules of thumb given by Eqs. (1) through
(3) provide a basis to estimate the plausibility of the
results obtained by VoCav2D. Referring to Section 4,
where the analytical and numerical results are com-
pared for some cases, it can be stated that VoCav2D
yields reasonable results. For the pressure fluctuations
induced by a cavitating vortex, the amplitude of the os-
cillation of the cavitation radius is very important. In
fact, a direct experimental validation of this quantity is
very challenging. In light of the predicted amplitudes
of pressure fluctuations occurring with 3nnz and 4nnz
which can be traced back to the cavitating tip vortex,
the indirect experimental validation has been success-
ful.

The fundamental assumptions made in this

work are (1) the validity of the quasi two-dimensional
approach when the dynamical behaviour of the pro-
peller tip vortex is concerned and (2) that the initial
cavitation radius of a vortex segment correlates with
the thickness of sheet cavitation at the trailing edge of
the propeller. The former has been discussed exten-
sively in Section 3, the latter is a postulate. It has been
shown in Section 4 that a vortex segment initialised
with the equilibrium cavitation radius will not con-
tribute in an important manner to pressure fluctuations.
This suggests that the initial cavitation radius must de-
viate from the equilibrium radius, which makes it plau-
sible to link it with the cavity thickness in the closure
region of sheet cavitation. The results presented in
Section 4 also show a strong dependency between the
initial deflection and the amplitude of the oscillations
of the cavitation radius as well as the resultant pressure
fluctuations. This emphasizes how important accurate
values for rc0 are.

It has been observed during the experiments
that remainders of the disintegrating sheet cavitation
surround the main tip vortex cavity in the mixing zone
close to the tip. In the f2-formulation these are taken
into account by a number of spherical bubbles placed
around the vortex axis and their presence is assumed
to reduce the ambient density from ρ to ρ?. The influ-
ence of the reduced density on rc (t) is shown in Sec-
tion 4. Certainly, this is a gross simplification of the
real flow conditions, since a close look at the flow in
this region reveals that remainders of the sheet cavita-
tion are not whirring randomly. Rather, secondary vor-
tex structures become visible (whereof the re-entrant
jet vortex mentioned in Sections 2 and 3.5 is the most
prominent representative), each attracting agglomera-
tions of smaller bubbles. These smaller vortices merge
with the tip vortex. The role of these secondary vortex
structures with respect to pressure fluctuations in the
considered frequency range is not clear.

A major problem of the quasi two-
dimensional approach is the necessity of prescribing
the outer domain radius rD. A physical equivalent to
this quantity is not obvious and thus it appears as a
free parameter which has to be chosen with some care.
In this study, reasonable results could be achieved by
using a value ten times larger than the average cavita-
tion radius. Prescribing the outer domain radius can be
avoided by using a fully three-dimensional approach.
Eq. (32) results from such a fully three-dimensional
approach. For the present application, the benefit is
limited, because a linearisation has been undertaken
and no information on the oscillation amplitudes can
be given. However, what becomes clear is that in-
stead of the outer domain radius rD the wavenumber
α = 2πλc appears in the equation.

The first interface used in the simulation tool
is the body force-based coupling algorithm (Section
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3.3) which is needed for determining the effective
wake field of the propeller with the aim of estimating
the correct blade load. This approach has been used
and validated by several authors and is not regarded as
a major source of errors.

Rather, the second interface is expected to
attract a critical discussion: by means of the proce-
dure described in Section 3.5, vortex parameters as rc0
(or hmax, respectively), Γini and ra0 are extracted from
steady state RANS simulations of the propeller in ho-
mogenous inflow. It is assumed that equality of the
blade load kt,blade implies equality of the flow condi-
tions at the blade tip and the results of the steady state
RANS simulations for the flow details at the blade tip
are representative for the unsteady propeller flow when
the propeller operates in inhomogenous inflow. This
will introduce some errors and further investigation
would be needed for clarification.

In the experimental campaign, a rudder was
attached to the dummy model that has not been in-
cluded in the numerical model. The effect of the rud-
der is twofold. On the one hand, the tip vortex gets sig-
nificantly disturbed when it impinges the rudder sur-
face; on the other hand, the propeller load is influenced
by the presence of the rudder. Berger et al. (2015) in-
vestigated the influence of the rudder on the unsteady
propeller thrust. It could be shown that the presence
of a rudder can lead to considerable thrust fluctuations
and this will have an effect on the circulation of the
tip vortex. In the present case, the nominal wake field
predicted by the RANS solver tends to overpredict the
wake peak in the 12 o’clock region, see Fig. 18. This
may compensate the missing rudder to a certain extent.

CONCLUSIONS AND OUTLOOK

A hybrid method for the prognosis of higher-
order pressure fluctuations induced by the cavitating
propeller has been presented. The method consists of
three components: Hull pressure fluctuations and the
dynamics of sheet cavitation are calculated by means
of the panel code panMARE; the dynamics of tip vor-
tex cavitation is modelled by the in-house code Vo-
Cav2D. The latter needs certain input parameters such
as, for example, the initial circulation of the tip vor-
tex, the radius of the viscous vortex core and the ini-
tial cavitation radius. These values are obtained from
detailed RANS simulations of the flow near the blade
tip. The correct blade load is an important factor when
propeller-induced pressure fluctuations are considered.
Therefore, the effective wake field is obtained by a
body force-based coupling between panMARE and the
RANS solver ANSYS CFX. The obtained results for
the cavitating propeller of a container vessel show sat-
isfactory agreement with experimental data. Certainly,
further experimental investigations are required for a
broad validation of the method. A clear drawback of

the method is the necessity of prescribing the outer do-
main radius for the tip vortex cavitation model. Al-
though the influence of this parameter has been stud-
ied, a general rule for the choice of the outer radius
could not be figured out. This should be addressed in
further work.
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NOMENCLATURE

In this glossary, only the most important vari-
ables are included. Auxiliary quantities used only
within particular passages are not listed.

General variables and constants
x = (x,y,z) Space variable in global coordinates
X = (X ,Y,Z) ∼ in body-fixed coordinates
t Time variable
g Gravity constant
ρ Density of water
µ Dynamic viscosity of water
pv Vapour pressure of water
Potential flow
V, U Total velocity
V∞ Inhomogenous inflow
V0 Undisturbed flow
V+ Induced velocity
Φ Velocity potential in general
ΦP, ΦH , ΦTV Velocity potential induced by the pro-

peller, the hull, tip vortex cavitation
p Pressure
µ , σ Dipole strength, source strength
X0 Collocation point
n Normal vector of a surface element
η Cavity thickness
s = (s1,s2,s3) Local, non-orthogonal panel coordinate

system, s1 aligned with mean flow
RANS simulations
u Reynolds-averaged velocity
p Reynolds-ave. pressure
τ Reynolds-ave. molecular stress tensor
τT Reynolds stress tensor
f Momentum source term
Ṡ Production term
Flow of a vortex segment
(ψ,ϕ,ξ ) Local cylindrical coordinate system
uϕ , uξ Local velocity in the circumferential and

radial direction
Γ Circulation in general
pc Pressure inside the cylindrical cavity
pb Pressure inside a cavitation bubble
pD∞ Pressure imposed at ξ = rD
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rc Radius of the cavitating tip vortex core
rb Radius of a cavitation bubble
rB Radius of the bubble release zone
rD Domain radius for vortex flow
ra Radius of the viscous core
σC Core cavitation number, see Choi et al.

(2009)
TVC modelling
Γ? Circulation of a vortex segment
x? Position of a vortex segment in global co-

ordinates
t? Age of a vortex segment
s? Position of a vortex segment along vortex

axis
σ? Source strength of a vortex segment due

to cavity volume variation
ρ? Reduced density of the vortical flow sur-

rounding a vortex segment
hcav,max, hcav,cl Maximum height of cavity sheet at pro-

peller tip, height in the closure region
Propeller flow
R, D = 2R Propeller radius, diameter
nz Number of blades
n Rate of revolution
VS Ship speed
J = V

nD Advance coefficient with propeller inflow
velocity V

kt =
T

ρn2D4 and kt,blade =
Tblade

ρn2D4

Thrust coefficient, ∼ of a single blade
σn =

pref+ρgh−pv
1/2ρn2D2 and σn0.8 =

pref+ρg(h−0.8R)−pv
1/2ρn2D2

Cavitation numbers with h distance be-
tween propeller shaft and water surface

pref Reference pressure
Γb Maximum of bound blade circulation
Γini = γiniΓb Initial circulation of the tip vortex di-

rectly behind TE

Auxiliary quantities
L , T , V Characteristic length, time and velocity

(dependent on context)
• Average value
•̂ Amplitude of fluctuation
•̃ Value extracted from RANS simulation
•∞ Final state value
•0 Initial value
•c, •nc Related to cavitating/ non-cavitating flow
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DISCUSSION

Questions from Johan Bosschers, MARIN, The
Netherlands. Thank you for presenting an interest-
ing approach for the complex problem of hull pressure
fluctuations due to cavitating vortices. A 2D compu-
tational method is used to predict the cavitating vortex
dynamics which includes a strong coupling with the
azimuthal velocity in the so-called f1-formulation.

(1) Ref. (Bosschers, 2009c) and (Bosschers, 2009d)
present results obtained with a similar method
and identical boundary conditions for an oscil-
lating 2D vortex cavity. Ref. (Bosschers, 2009c)
shows that the azimuthal velocity becomes very
large when the vortex cavity size becomes small
with a very small viscous dominated region just
outside the cavity, which is required to satisfy
the zero shear stress boundary condition. Can
the authors discuss their results for a complete
or almost complete collapse of the vortex cavity,
in particular with respect to the azimuthal veloc-
ity?

(2) For an oscillation around an equilibrium cavity
size it is shown in (Bosschers, 2009c) and (Boss-
chers, 2009d) that the computed resonance fre-
quency is in agreement with the analytical so-
lution for inviscid flow when the cavity size is
larger than the viscous core size but becomes
increasingly smaller when the cavity size be-
comes smaller than the viscous core size. Such
behaviour is not apparent from Figure 13 in
the presented paper. Can the authors explain
the computed trends of the oscillation period as
shown in Figure 13 in a bit more detail including
the comparison with the analytical solution?

(3) For the 3D computation on the propeller, what is
the influence of the spatial discretisation of the
cavitating vortex on the hull pressure data?

Question from Prof. Steven L. Ceccio, University of
Michigan, Ann Arbor, USA. The discusser would
like to thank the authors for an interesting paper that
describes how a combination of modeling approaches
may be used to predict higher-order hull pressure fluc-
tuations due to propeller sheet and tip vortex cavita-
tion. The authors consider the volume oscillations of
the tip vortex as a source of the higher order pressure
pulsations. Could they relate their formulation to that
offered by Pennings et al. (2015a) for the modes of a
singing tip vortex?

Authors’ Reply. The authors would like to thank the
discussers for their valuable and interesting contribu-
tions.

In order to address Mr Bosschers’ point (1),
the authors would like to refer to Fig. 34. Similar to the
procedure reported in the study of Bosschers (2009c),
the circumferential momentum equation (Eq. (37)) has
been solved for a prescribed cavity radius rc (t). With
respect to the strong increase of azimuthal (circumfer-
ential) velocity when the cavity radius becomes small,
VoCav2D-f1 predicts the same trend as the method
presented by Bosschers. However, the maximum azi-
muthal velocities predicted by both methods differ in
a quantitative manner.
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Figure 34: Distribution of azimuthal (circumferen-
tial) velocity for a cavitating vortex. In this case, the
flow is initialised so that rc0 = ra0 at t = 0 and rc (t) is
prescribed. It can be seen that the azimuthal velocity
becomes large when the cavity radius decreases. See
Section 4.2 for the meaning of Vvs.

Point (2) of Mr Bosschers’ contribution is
about the effect of viscosity on the oscillation period
of a vortex cavity near the equilibrium radius. The dis-
cusser states that for the case of the cavity radius be-
ing larger than the viscous core radius, the oscillation
period tends to the inviscid analytical solution given
by Eq. (3) and that such a behaviour is not appar-
ent from Fig. 13 in Section 4.2. Firstly, the oscilla-
tions taken into consideration in Section 4.2 are gen-
erally large compared to the particular average cavity
radius, and Eq. (3), originating from a linearisation,
may not be thoroughly valid in these cases. Thus, to
a certain extent, deviations between the inviscid ana-
lytical solution and the numerical solution taking into
account viscosity have to be expected. To clarify this
further, an additional simulation has been carried out
involving only small oscillations around the equilib-
rium radius and using the same parameters as in the
study presented by Bosschers (2009c). The results are
shown in Fig. 35. It can be seen that both methods cap-
ture the influence of viscosity on the oscillation period
in nearly the same way. However, even for the cav-
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ity radius being ten times larger than the viscous core
radius, the oscillation period is affected by viscosity.
Note that in the present study this ratio is significantly
smaller than ten in every case.
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Figure 35: Influence of the viscous core radius ra0
on the oscillation frequency fc of a vortex cavity near
the equilibrium radius rc,eq. fref refers to the oscilla-
tion frequency obtained by Eq. (3) without taking into
account viscous effects.

Induced hull pressure fluctuations have been
obtained by the f2-formulation of VoCav2D. A de-
tailed convergence study with respect to spatial dis-
cretisation has not been documented. In order to ans-
wer Mr Bosschers’ question (3) in parts, it can be
stated that in the current study, appr. 5700 segments
are used for one blade revolution – in other words: ev-
ery 0.0001s, a new segment originates from the trail-
ing edge. Using this spacing, no significant changes

in the results occur when the discretisation is refined
further.

Prof. Ceccio takes up the considerations
made in Sections 3.4 and 6. Pennings et al. (2015a)
address the problem of the singing vortex in the the-
oretical part of their study by considering small per-
turbations of the cavity surface of a cylindrical and
very long cavitating vortex. This leads to a disper-
sion relation for waves travelling on the cavity sur-
face; however, no conclusions on the amplitudes of
the disturbances can be drawn by using this linearised
theory. The present formulation of VoCav2D takes
into account axisymmetric deflections of the cavity
surface and neglects any interaction of two adjacent
cavity cross sections – i.e. the approach is quasi two-
dimensional and every disturbance of the cavity sur-
face is swept downstream with the flow velocity. Since
for every segment the non-linear momentum equations
are solved, the oscillation amplitudes can be approxi-
mated, which is essential for the prognosis of hull pres-
sure fluctuations.
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