

ITTC Propeller Benchmark

PPTC Propeller - VP1304

Report 4488

Potsdam, April 2016

Schiffbau-Versuchsanstalt Potsdam GmbH, Marquardter Chaussee 100, 14469 Potsdam Tel. +49 331 56712-0, Fax +49 331 56712-49, www.sva-potsdam.de

ITTC Propeller Benchmark

PPTC Propeller - VP1304

Schiffbau-Versuchsanstalt Potsdam GmbH Marquardter Chaussee 100 14469 Potsdam Tel. +49 331 56712-0 Fax +49 331 56712-49

Author

Dipl.-Ing. R. Grabert Dipl.-Ing. L. Lübke M. Sc. R. Klose Dipl.-Ing U. Barkmann

Potsdam, 30/08/2017

hh-

Management

Richard Line

Author

Content

1	Introduction	. 6
1.1	Propeller benchmark	6
1.2	Paticipants	. 7
1.3	Propeller	. 8
1.4	PPTC - VP1304	.9
1.5	PPTC - VP1304, main data	. 10
1.6	PPTC - VP1304, 3D	. 11
2	Overview	. 12
2.1	Open water characteristic - thrust model scale	. 12
2.2	Open water characteristic - torque model scale	.13
2.3	Open water characteristic - efficiency model scale	. 14
2.4	Open water characteristic - thrust full scale	. 15
2.5	Open water characteristic - torque full scale	. 16
2.6	Open water characteristic - efficiency full scale	. 17
3	Statistics	. 18
3.1	Tables - model scale	. 18
3.2	Tables - full scale	. 19
3.3	Diagrams - Thrust	.20
3.4	Diagrams - Torque	.21
3.5	Diagrams - Efficiency	.22
3.6	Diagrams - Difference CFD and EFD	. 23
3.7	Diagrams - Relative difference CFD and EFD	.24
4	Result EFD	. 25
4.1	Open Water Characteristic	. 25
4.2	EFD - Statistics	.26
5	Result R01	. 27
5.1	R01 - Open water characteristic	. 27
5.2	R01 - Differences CFD and EFD	. 28
5.3	R01 - Radial distribution tables	. 29
5.4	R01 - Radial distribution diagrams	. 30
5.5	R01 - Questionaire part I	. 31
5.5	R01 - Questionaire part II	. 32
6	Result R02	. 33
6.1	R02 - Open water characteristic	. 33
6.2	R02 - Differences CFD and EFD	. 34
6.3	R02 - Radial distribution tables	.35
6.4	R02 - Radial distribution diagrams	. 36
6.5	R02 - Questionaire part I	. 37
6.5	R02 - Questionaire part II	. 38
7	Result R03	. 39

Content

7.1	R03 - Open water characteristic	39
7.2	R03 - Differences CFD and EFD	40
7.3	R03 - Radial distribution tables	41
7.4	R03 - Radial distribution diagrams	42
7.5	R03 - Questionaire part I	43
7.5	R03 - Questionaire part II	44
8	Result R04	45
8.1	R04 - Open water characteristic	45
8.2	R04 - Differences CFD and EFD	46
8.3	R04 - Radial distribution tables	47
8.4	R04 - Radial distribution diagrams	48
8.5	R04 - Questionaire part I	49
9	Result R05	47
9.1	R05 - Open water characteristic	47
9.2	R05 - Differences CFD and EFD	48
9.3	R05 - Radial distribution tables	49
9.4	R05 - Radial distribution diagrams	50
9.5	R05 - Questionaire part I	51
9.5	R05 - Questionaire part II	52
10	Result R06	53
10.1	R06 - Open water characteristic	53
10.2	R06 - Differences CFD and EFD	54
10.3	R06 - Radial distribution tables	55
10.4	R06 - Radial distribution diagrams	56
10.5	R06 - Questionaire part I	57
10.5	R06 - Questionaire part II	58
11	Result R07	59
11.1	R07 - Open water characteristic	59
11.2	R07 - Differences CFD and EFD	60
11.3	R07 - Radial distribution tables	61
11.4	R07 - Radial distribution diagrams	62
11.5	R07 - Questionaire part I	63
11.5	R07 - Questionaire part II	64
12	Result R08	65
12.1	R08 - Open water characteristic	65
12.2	R08 - Differences CFD and EFD	66
12.3	R08 - Radial distribution tables	67
12.4	R08 - Radial distribution diagrams	68
12.5	R08 - Questionaire part I	69
12.5	R08 - Questionaire part II	70

Content

13	Result R10	. 71
13.1	R10 - Open water characteristic	. 71
13.2	R10 - Differences CFD and EFD	. 72
13.3	R10 - Radial distribution tables	.73
13.4	R10 - Radial distribution diagrams	. 74
13.5	R10 - Questionaire part I	. 75
13.5	R10 - Questionaire part II	.76
14	Result R11	. 77
14.1	R11 - Open water characteristic	. 77
14.2	R11 - Differences CFD and EFD	. 78
14.3	R11 - Radial distribution tables	.79
14.4	R11 - Radial distribution diagrams	. 80
14.5	R11 - Questionaire part I	. 81
14.5	R11 - Questionaire part II	. 82
15	Result R12	. 83
15.1	R12 - Open water characteristic	. 83
15.2	R12 - Differences CFD and EFD	. 84
15.3	R12 - Radial distribution tables	.85
15.4	R12 - Radial distribution diagrams	. 86
15.5	R12 - Questionaire part I	. 87
15.5	R12 - Questionaire part II	. 88
16	Result R14	. 89
16.1	R14 - Open water characteristic	. 89
16.2	R14 - Differences CFD and EFD	. 90
16.3	R14 - Radial distribution tables	.91
16.4	R14 - Radial distribution diagrams	. 92
16.5	R14 - Questionaire part I	. 93
16.5	R14 - Questionaire part II	.94
17	Result R15	. 95
17.1	R15 - Open water characteristic	. 95
17.2	R15 - Differences CFD and EFD	. 96
17.3	R15 - Radial distribution tables	.97
17.4	R15 - Radial distribution diagrams	. 98
17.5	R15 - Questionaire part I	. 99
17.5	R15 - Questionaire part II	. 100
18	Result R16	. 101
18.1	R16 - Open water characteristic	. 101
18.2	R16 - Differences CFD and EFD	. 102
18.3	R16 - Radial distribution tables	.103
18.4	R16 - Radial distribution diagrams	. 104
18.5	R16 - Questionaire part I	. 105

1 Introduction

1.1 Propeller benchmark

The current ITTC scaling method for propellers is well proven and in use by the majority of the institutions. Nevertheless, problems with applying this method for unconventional propellers like Kappel or CLT propellers occurred and a need to update the procedure has arisen. Therefore the propulsion committee of the 27th ITTC conference has been asked to initiate a benchmark test for CFD calculations, with the intention to investigate the capabilities of CFD to predict scale effects on the propeller performance. Two different types of propellers had to be investigated, a conventional and an unconventional propeller.

For this purpose the controllable pitch propeller VP1304 was used to study the scale effects for a conventional propeller. The VP1304 was already published by the SVA Potsdam in the course of the propeller workshop under the acronym PPTC (Potsdam Propeller Test Case) held at the smp'11 conference in Hamburg. During the period of the 27th ITTC no free geometry of an unconventional propeller was available. Therefore the propulsion committee of the 28th ITTC conference has continued this work.

SVA Potsdam has provided P1727 as an example for an unconventional propeller. It has been designed by SVA Potsdam for the ongoing research project "TIP RAKE - Further development of the prognosis methods for tip rake propellers", funded by the German Federal Ministry for Economic Affairs and Energy.

In the course of the ITTC benchmark, both propellers were investigated in full scale and model scale. Excel sheets were provided for the submission of the computational results. The evaluation of the results is anonymous. Despite the comparison of the CFD results with EFD results is not the main topic of this investigation, EFD results are presented, too. Open water tests have been carried out in SVA Potsdam for both propellers. Furthermore the ITTC scaling method was applied to the open water test results and plotted together with the full scale CFD results. These curves shall show the current state.

Within this report the results of the conventional propeller are presented. The results of the unconventional propeller can be found in report 4487.

Table 1 shows all participants in alphabetic order and which propeller has been calculated by each of them. Within the report each result is numbered in chronologic order of incoming. Table 2 lists the main data of both propellers.

1.2 Paticipants

Institute	РРТС	TRP
	VP1304	P1727
China Ship Scientific Research Center	Х	Х
Dalian University of Technology	Х	Х
Hamburgische Schiffbau-Versuchsanstalt	Х	Х
Hyundai Maritime Research Institute	Х	Х
Indian Institute of Technology Madras		Х
Istanbul Technical University	Х	Х
Japan Marine United Corporation	Х	Х
Krylov State Research Centre	Х	Х
Marine Design & Research Institute of China	Х	
Pusan National University		Х
Samsung Ship Model Basin	Х	Х
Schiffbau-Versuchsanstalt Potsdam	Х	Х
Shanghai Jiao Tong University	Х	Х
Shanghai Ship and Shipping Research Institute	Х	
Ship Design and Research Centre Gdansk	Х	Х
SSPA Sweden AB	Х	
Total results	14	13

1.3 Propeller

			РРТ	C	TR	P
Propeller			VP13	VP1304		27
Scale ratio	l	[-]	12	1	31.428	1
Propeller diameter	D	[mm]	250	3000	238.6	7500
Pitch at $r/R = 0.70$	$P_{0.7}$	[mm]	408.8	4905	200.6	6305
Pitch at $r/R = 0.75$	<i>P</i> _{0.75}	[mm]	407.4	4889	191	6003
Mean pitch	P_{mean}	[mm]	391.9	4703	195.5	6143
Chord length at $r/R = 0.70$	$C_{0.7}$	[mm]	104.2	1250	56.4	1772
Chord length at $r/R = 0.75$	$C_{0.75}$	[mm]	106.3	1276	55.6	1748
Thickness at $r/R = 0.75$	t _{0.75}	[mm]	3.8	46	2.9	92
Pitch ratio	$P_{0.7}/D$	[-]		1.635		0.841
Mean pitch ratio	P_{mean}/D	[-]		1.568		0.819
Area ratio	$A_{\rm E}/A_0$	[-]		0.779		0.444
Skew	$\Theta_{\rm eff}$	[°]		18.8		25.7
Rake at $r/R = 0.70$	E 0.7	[°]				-9
Rake at $r/R = 0.75$	E 0.75	[°]				-8.8
Hub diameter ratio	$d_{ m h}/D$	[-]		0.3		0.154
Number of blades	Ζ	[-]		5		4
Direction of rotation			right-ha	unded	right-ha	anded

Operation point			model	full
PPTC Propeller VP1304			scale	scale
ratio	λ		12.00	1.00
Water density	ρ	$[kg/m^3]$	999.00	1025.87
Kinematic viscosity of	V	[m²/s]	1.139E-06	1.188E-06
Rate of revolutions	п	[1/s]	15.00	4.33

4488

9

1.4 PPTC - VP1304

1.5 PPTC - VP1304, main data

1.6 PPTC - VP1304, 3D

2 Overview

J [-]	0.60	0.80	1.00	1.20	1.40 Av	arage over J CFI) - EFD
						[-]*	$[-]^{**}$
EFD	0.629	0.510	0.399	0.295	0.188	0.000	0.0%
R01	0.628	0.516	0.404	0.292	0.174	-0.002	-0.4%
R02	0.612	0.489	0.368	0.250	0.138	-0.033	-8.2%
R03	0.625	0.510	0.396	0.287	0.170	-0.007	-1.6%
R04	0.624	0.506	0.394	0.291	0.186	-0.004	-0.9%
R05	0.617	0.505	0.396	0.286	0.176	-0.008	-2.1%
R06	0.618	0.492	0.372	0.257	0.139	-0.028	-7.0%
R07	0.624	0.498	0.375	0.262	0.149	-0.023	-5.6%
R08	0.615	0.491	0.372	0.261	0.151	-0.026	-6.4%
R10	0.634	0.504	0.379	0.262	0.150	-0.018	-4.5%
R11	0.608	0.496	0.394	0.288	0.178	-0.011	-2.7%
R12	0.618	0.497	0.380	0.269	0.157	-0.020	-4.9%
R14	0.622	0.496	0.375	0.263	0.152	-0.023	-5.6%
R15	0.623	0.504	0.392	0.286	0.181	-0.007	-1.8%
R16	0.622	0.494	0.371	0.257	0.144	-0.027	-6.6%

K_T [-] model scale

2.2 Open water characteristic - torque model scale

J [-]	0.60	0.80	1.00	1.20	1.40 A	varage over J CFI	D - EFD
						[-]*	$[-]^{**}$
EFD	1.396	1.178	0.975	0.776	0.559	0.000	0.0%
R01	1.423	1.216	1.005	0.784	0.539	0.017	1.7%
R02	1.442	1.212	0.981	0.749	0.517	0.003	0.3%
R03	1.422	1.215	1.000	0.781	0.539	0.015	1.5%
R04	1.394	1.175	0.972	0.778	0.561	-0.001	-0.1%
R05	1.425	1.224	1.022	0.813	0.583	0.037	3.8%
R06	1.431	1.196	0.973	0.752	0.518	-0.003	-0.3%
R07	1.410	1.184	0.961	0.742	0.506	-0.016	-1.7%
R08	1.394	1.173	0.958	0.744	0.511	-0.021	-2.1%
R10	1.456	1.211	0.978	0.747	0.509	0.003	0.3%
R11	1.378	1.208	1.020	0.813	0.583	0.024	2.4%
R12	1.424	1.199	0.983	0.767	0.531	0.004	0.4%
R14	1.422	1.187	0.961	0.742	0.509	-0.013	-1.3%
R15	1.396	1.175	0.969	0.765	0.543	-0.007	-0.8%
R16	1.434	1.192	0.961	0.740	0.504	-0.011	-1.1%

 $10K_Q$ [-] model scale

J [-]	0.60	0.80	1.00	1.20	1.40	Avarage	Avarage obver J			
						C	CFD-EFD			
EFD	0.430	0.551	0.652	0.726	0.749	0.000	0.0%			
R01	0.421	0.540	0.639	0.711	0.720	-0.015	-2.5%			
R02	0.405	0.514	0.596	0.637	0.594	-0.072	-11.6%			
R03	0.420	0.535	0.631	0.701	0.701	-0.024	-3.9%			
R04	0.427	0.548	0.646	0.715	0.741	-0.006	-1.0%			
R05	0.413	0.525	0.616	0.672	0.671	-0.042	-6.8%			
R06	0.413	0.524	0.608	0.653	0.597	-0.062	-10.1%			
R07	0.423	0.535	0.621	0.673	0.658	-0.039	-6.4%			
R08	0.421	0.533	0.618	0.671	0.659	-0.041	-6.6%			
R10	0.416	0.529	0.618	0.671	0.657	-0.044	-7.0%			
R11	0.421	0.523	0.616	0.678	0.681	-0.038	-6.1%			
R12	0.414	0.528	0.616	0.671	0.660	-0.044	-7.0%			
R14	0.417	0.532	0.621	0.677	0.665	-0.039	-6.3%			
R15	0.426	0.546	0.643	0.714	0.741	-0.007	-1.2%			
R16	0.414	0.528	0.614	0.663	0.638	-0.050	-8.1%			

2.3 Open water characteristic - efficiency model scale

η_0 [-] m	odel scale
----------------	------------

2.4 Open water characteristic - thrust full scale

K_T [-] full	scale
----------------	-------

J [-]	0.60	0.80	1.00	1.20	1.40 A	varage over J CFI	D - EFD
						[-]*	[-]**
ITTC'78	0.631	0.512	0.401	0.297	0.190	0.000	0.0%
R01	0.627	0.504	0.388	0.281	0.174	-0.011	-2.8%
R02	0.631	0.509	0.390	0.278	0.167	-0.011	-2.8%
R03	0.640	0.515	0.395	0.283	0.172	-0.005	-1.3%
R04	0.629	0.514	0.403	0.299	0.197	0.002	0.5%
R05	0.615	0.508	0.403	0.298	0.193	-0.003	-0.7%
R06	0.635	0.515	0.401	0.293	0.189	0.000	0.1%
R07	0.644	0.512	0.390	0.279	0.170	-0.007	-1.8%
R08	0.630	0.505	0.387	0.279	0.171	-0.012	-2.9%
R10	0.647	0.521	0.400	0.286	0.176	0.000	0.0%
R11	0.616	0.500	0.398	0.292	0.183	-0.008	-2.0%
R12	0.621	0.503	0.388	0.279	0.179	-0.012	-3.0%
R14	0.636	0.511	0.390	0.280	0.170	-0.009	-2.2%
R15	0.628	0.502	0.383	0.274	0.165	-0.016	-3.9%
R16	0.638	0.513	0.392	0.280	0.170	-0.008	-1.9%

2.5 Open water characteristic - torque full scale

 $10K_Q$ [-] full scale

J [-]	0.60	0.80	1.00	1.20	1.40 A	varage over J CF	D - EFD
						[-]*	[-]**
ITTC'78	1.386	1.168	0.965	0.766	0.549	0.000	0.0%
R01	1.391	1.167	0.955	0.751	0.522	-0.009	-1.0%
R02	1.429	1.204	0.983	0.762	0.527	0.015	1.5%
R03	1.442	1.211	0.989	0.771	0.536	0.023	2.4%
R04	1.393	1.184	0.982	0.787	0.576	0.018	1.9%
R05	1.388	1.191	1.005	0.797	0.577	0.025	2.6%
R06	1.425	1.207	0.998	0.790	0.584	0.034	3.5%
R07	1.414	1.183	0.966	0.751	0.515	-0.001	-0.1%
R08	1.383	1.167	0.957	0.749	0.515	-0.012	-1.3%
R10	1.458	1.224	0.997	0.773	0.538	0.031	3.3%
R11	1.367	1.188	0.996	0.788	0.560	0.013	1.4%
R12	1.397	1.183	0.973	0.758	0.544	0.005	0.5%
R14	1.430	1.196	0.970	0.753	0.522	0.008	0.8%
R15	1.394	1.163	0.946	0.736	0.506	-0.017	-1.8%
R16	1.439	1.202	0.975	0.756	0.526	0.013	1.3%

2.6 Open water characteristic - efficiency full scale

ηο[-]	full scale	

J [-]	0.60	0.80	1.00	1.20	1.40 A	Avarage over J CFI	D - EFD
						[-]*	[-]**
ITTC'78	0.435	0.558	0.662	0.740	0.770	0.000	0.0%
R01	0.430	0.550	0.646	0.716	0.742	-0.016	-2.6%
R02	0.422	0.538	0.631	0.696	0.705	-0.035	-5.5%
R03	0.424	0.542	0.636	0.701	0.715	-0.030	-4.7%
R04	0.431	0.553	0.653	0.727	0.761	-0.008	-1.3%
R05	0.423	0.543	0.638	0.714	0.747	-0.020	-3.2%
R06	0.425	0.543	0.640	0.708	0.721	-0.026	-4.1%
R07	0.435	0.551	0.643	0.708	0.734	-0.019	-3.0%
R08	0.435	0.551	0.643	0.712	0.741	-0.017	-2.7%
R10	0.424	0.542	0.639	0.707	0.728	-0.025	-4.0%
R11	0.431	0.536	0.635	0.708	0.730	-0.025	-4.0%
R12	0.425	0.541	0.634	0.702	0.732	-0.026	-4.1%
R14	0.424	0.544	0.640	0.709	0.726	-0.025	-3.9%
R15	0.430	0.549	0.644	0.711	0.728	-0.021	-3.3%
R16	0.424	0.543	0.640	0.707	0.722	-0.026	-4.1%

3 Statistics

3.1 Tables - model scale

	J [-]	0.60	0.80	1.00	1.20	1.40 Av	arage over J CFI) - EFD
							[-]*	$[-]^{**}$
Minimum		0.608	0.489	0.368	0.250	0.138	-0.033	-8.2%
1 th Quartile		0.617	0.494	0.373	0.261	0.150	-0.025	-6.2%
Median		0.622	0.497	0.380	0.266	0.154	-0.019	-4.7%
3 th Quartile		0.624	0.505	0.394	0.286	0.175	-0.007	-1.8%
Maximum		0.634	0.516	0.404	0.292	0.186	-0.002	-0.4%

*K*_T [-] model scale

$10K_Q$ [-] model scale

	J [-]	0.60	0.80	1.00	1.20	1.40 Av	varage over J CFI) - EFD
							[-]*	[-]**
Minimum		1.378	1.173	0.958	0.740	0.504	-0.021	-2.1%
1 th Quartile		1.399	1.185	0.963	0.745	0.510	-0.010	-1.0%
Median		1.423	1.198	0.976	0.759	0.524	0.001	0.1%
3 th Quartile		1.429	1.211	0.996	0.780	0.542	0.012	1.2%
Maximum		1.456	1.224	1.022	0.813	0.583	0.037	3.8%

	J [-]	0.60	0.80	1.00	1.20	1.40 Av	varage over J CF	D - EFD
							[-]*	[-]**
Minimum		0.405	0.514	0.596	0.637	0.594	-0.072	-11.6%
1 th Quartile		0.414	0.526	0.616	0.671	0.657	-0.044	-7.0%
Median		0.419	0.531	0.618	0.673	0.662	-0.040	-6.5%
3 th Quartile		0.421	0.535	0.629	0.695	0.696	-0.027	-4.4%
Maximum		0.427	0.548	0.646	0.715	0.741	-0.006	-1.0%

η_{0} [-] model scale

3.2 Tables - full scale

	J [-]	0.60	0.80	1.00	1.20	1.40 Ava	arage over J CFI) - EFD
							[-]*	[-]**
Minimum		0.615	0.500	0.383	0.274	0.165	-0.016	-3.9%
1 th Quartile		0.627	0.504	0.388	0.279	0.170	-0.011	-2.8%
Median		0.630	0.510	0.391	0.280	0.173	-0.008	-1.9%
3 th Quartile		0.638	0.514	0.400	0.291	0.182	-0.003	-0.8%
Maximum		0.647	0.521	0.403	0.299	0.197	0.002	0.5%

K_T [-] full scale

$10K_Q$ [-] full scale

	J [-]	0.60	0.80	1.00	1.20	1.40 A	varage over J CFI) - EFD
							[-]*	[-]**
Minimum		1.367	1.163	0.946	0.736	0.506	-0.017	-1.8%
1 th Quartile		1.392	1.183	0.967	0.752	0.522	0.000	0.1%
Median		1.405	1.189	0.978	0.760	0.532	0.013	1.4%
3 th Quartile		1.430	1.203	0.994	0.783	0.556	0.022	2.3%
Maximum		1.458	1.224	1.005	0.797	0.584	0.034	3.5%

η_{0} [-] full scale

	J [-]	0.60	0.80	1.00	1.20	1.40 Av	varage over J CFE) - EFD
							[-]*	[-]**
Minimum		0.422	0.536	0.631	0.696	0.705	-0.035	-5.5%
1 th Quartile		0.424	0.542	0.636	0.707	0.723	-0.026	-4.1%
Median		0.425	0.543	0.640	0.708	0.729	-0.025	-3.9%
3 th Quartile		0.431	0.550	0.643	0.711	0.739	-0.019	-3.0%
Maximum		0.435	0.553	0.653	0.727	0.761	-0.008	-1.3%

3.3 Diagrams - Thrust

3.4 Diagrams - Torque

3.5 Diagrams - Efficiency

3.6 Diagrams - Difference CFD and EFD

3.7 Diagrams - Relative difference CFD and EFD

4 Result EFD

4.1 Open Water Characteristic

-		EFD	, model	scale	I	E FD, fu l	ll scale,	ITTC'78
	J	K_T	$10K_Q$	$\eta_{\rm O}$		K_T	$10K_Q$	$\eta_{\rm O}$
_	[-]	[-]	[-]	[-]		[-]	[-]	[-]
-	0.600	0.629	1.396	0.430		0.631	1.386	0.435
	0.800	0.510	1.178	0.551		0.512	1.168	0.558
	1.000	0.399	0.975	0.652		0.401	0.965	0.662
	1.200	0.295	0.776	0.726		0.297	0.766	0.740
_	1.400	0.188	0.559	0.749		0.190	0.549	0.770

4.2 EFD - Statistics

	EFD, model s	scale	EFD, fu	ll scale, I	FTC'78
J	$\sigma(K_T) \sigma(10K_Q)$	$\sigma(\eta_{\rm O})$	$\sigma(K_T)$ o	$\sigma(10K_Q)$	$\sigma(\eta_{\rm O})$
[-]	[-] [-]	[-]	[-]	[-]	[-]
0.600	0.007 0.016	0.004	0.007	0.016	0.004
0.800	0.006 0.015	0.006	0.006	0.015	0.006
1.000	0.005 0.015	0.007	0.005	0.015	0.007
1.200	0.005 0.014	0.009	0.005	0.014	0.009
1.400	0.004 0.013	0.014	0.004	0.013	0.014

5 Result R01

5.1 R01 - Open water characteristic

-		CFI), model :	scale	CFD, full scale
	J	K_T	$10K_Q$	$\eta_{\rm O}$	$K_T = 10K_Q = \eta_O$
_	[-]	[-]	[-]	[-]	[-] [-] [-]
	0.600	0.628	1.423	0.421	0.627 1.391 0.430
	0.800	0.516	1.216	0.540	0.504 1.167 0.550
	1.000	0.404	1.005	0.639	0.388 0.955 0.646
	1.200	0.292	0.784	0.711	0.281 0.751 0.716
_	1.400	0.174	0.539	0.720	0.174 0.522 0.742

5.2 R01 - Differences CFD and EFD

	CFD - EFD, model scale	CFD - EFD, full scale				
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$				
	[-] [-] [-]	[-] [-] [-]				
0.60	-0.001 0.027 -0.009	-0.004 0.005 -0.005				
0.80	0.006 0.038 -0.012	-0.008 -0.001 -0.008				
1.00	0.004 0.030 -0.013	-0.014 -0.009 -0.016				
1.20	-0.003 0.008 -0.015	-0.016 -0.015 -0.024				
1.40	-0.014 -0.020 -0.028	-0.016 -0.026 -0.028				

5.3 R01 - Radial distribution tables

model scale

		$K_T [-] \qquad \qquad 10K_Q [-]$						-]		
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.006	0.004	0.017	0.017	0.014	0.010	0.004
0.400	0.031	0.027	0.022	0.015	0.007	0.063	0.062	0.054	0.041	0.024
0.500	0.049	0.043	0.036	0.027	0.015	0.108	0.103	0.092	0.076	0.052
0.600	0.073	0.063	0.053	0.041	0.025	0.169	0.152	0.138	0.114	0.081
0.700	0.100	0.086	0.071	0.055	0.035	0.235	0.210	0.182	0.150	0.109
0.800	0.130	0.109	0.087	0.065	0.042	0.303	0.263	0.218	0.175	0.127
0.900	0.157	0.121	0.091	0.063	0.037	0.360	0.285	0.220	0.164	0.111
0.975	0.076	0.055	0.036	0.021	0.010	0.168	0.126	0.086	0.054	0.031

full scale										
			K_T [-]				10K _Q [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.007	0.005	0.017	0.016	0.014	0.010	0.006
0.400	0.030	0.027	0.022	0.016	0.009	0.059	0.057	0.052	0.042	0.027
0.500	0.048	0.042	0.035	0.026	0.015	0.102	0.098	0.088	0.072	0.050
0.600	0.071	0.062	0.051	0.039	0.024	0.158	0.147	0.130	0.107	0.077
0.700	0.098	0.083	0.068	0.052	0.034	0.223	0.200	0.172	0.141	0.103
0.800	0.129	0.105	0.082	0.061	0.040	0.293	0.249	0.206	0.165	0.120
0.900	0.159	0.118	0.086	0.060	0.037	0.361	0.273	0.209	0.158	0.109
0.975	0.081	0.057	0.035	0.021	0.010	0.177	0.127	0.084	0.055	0.031

Differences full and model scale

	$K_T [-] \qquad \qquad 10K_Q [-]$						[-]			
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.000	0.000	0.000	0.001	0.001	-0.001	-0.001	0.000	0.001	0.001
0.400	-0.001	-0.001	0.000	0.001	0.002	-0.004	-0.005	-0.002	0.001	0.002
0.500	-0.001	-0.001	-0.001	-0.001	0.000	-0.006	-0.005	-0.004	-0.004	-0.002
0.600	-0.002	-0.001	-0.002	-0.002	-0.001	-0.011	-0.005	-0.008	-0.007	-0.004
0.700	-0.002	-0.003	-0.003	-0.003	-0.001	-0.011	-0.010	-0.010	-0.009	-0.005
0.800	-0.001	-0.004	-0.004	-0.004	-0.001	-0.010	-0.013	-0.012	-0.010	-0.007
0.900	0.002	-0.003	-0.005	-0.003	0.000	0.002	-0.012	-0.011	-0.006	-0.002
0.975	0.005	0.001	-0.001	0.000	0.000	0.009	0.001	-0.003	0.001	0.000

5.5 R01 - Questionaire part I

J.,	J	Koi - Questionane part i	model scale	full scale
	Solve	2 1 •	STAR-CCM+	STAR-CCM+
	5011	Computational Domain		
	A1	Domain topology	Multiple domains	Multiple domains
	A2	Grid-coupling technique	Sliding	Sliding
		Sina couping teeninque	Shamg	Shung
		Propeller Representation		
	B1	Number of considered blades	Complete propeller	Complete propeller
		Computational Grid		
	C1	Туре	Unstructured	Unstructured
	C2	Local-grid refinement	Possible - used here	Possible - used here
	C3	Primary volume elements	Polyhedral	Polyhedral
	C4	Primary surface elements	Other	Other
	C5	Wall-boundary layer type	Prism Layer	Prism Layer
	C7	Number of cells at boundary layer	17	24
	C8	Y^+ -value at r/R=0.4, 0.7, 0.9	0.73,0.88,1.045	0.974,1.24,1.53
	C9	Averaged Y ⁺ -value	0.893	1.249
	C10	Number of cells on blade surface	278945	520385
		Norm. Dim. the Physical Domain		
	D1	X_upstream/D, X_downstream/D	20,40	20,40
	D2	Cross area of domain in prop. plain	510	510
		Numerical Approximation		
	E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS
	E2	Coordinates	Cartesian	Cartesian
	E3	Convection scheme (momentum eq.)	2nd-order centered	2nd-order centered
	E4	Transient approximation	implicit	implicit
	E5	Spatial order of acc. (neglecting BC)	2nd-order	2nd-order
	E6	Temporal order of accuracy	1st-order	1st-order
	E7	Time step	0.000185 sec	0.000642 sec
	E8	Equivalent rot. Angle for a time step	1 deg	1deg
	F 1	Turbulence treatment	1	1
	FI	Model name	k-omega	k-omega
	F2	Convection scheme (Turb. Eqn.)	2nd-order centered	2nd-order centered
		Downdowy and differen		
	C^{1}	Doundary conditions	rasalvad	recolved
			resolved	resolved
	G2		Tesolved	Fixed Value:
	G3	Initet	Fixed Velocity	Fixed Velocity
	G4	Outlet	Fixed Pressure	Fixed Pressure
	G5	Outer domain	Slip flow	Slip flow

5.5	Not Questionare part it	model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
Ι	Please comment	Gamma ReTheta method	no
	Computational Demands		
J1	Number of processors used	256	320
J2	Number of timesteps (steady)	0	0
J3	Number of timesteps (transient)	2070	2088
J4	Wall-clock time per revolution	5460 sec	5813 sec
	1		
	Code		
K	References	STAR-CCM+ V10.04 / Primary surface elements: Polyhedral	STAR-CCM+ V10.04 / Primary surface elements: Polyhedral
	Comments		
L	Add. info.	0 / 0	0 / 0
			1

5.5 R01 - Questionaire part II

6 Result R02

6.1 R02 - Open water characteristic

-		CFI), model :	scale	CFD, full scale				
	J	K_T	$10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$		
_	[-]	[-]	[-]	[-]	[-]	[-]	[-]		
_	0.600	0.612	1.442	0.405	0.631	1.429	0.422		
	0.800	0.489	1.212	0.514	0.509	1.204	0.538		
	1.000	0.368	0.981	0.596	0.390	0.983	0.631		
	1.200	0.250	0.749	0.637	0.278	0.762	0.696		
_	1.400	0.138	0.517	0.594	0.167	0.527	0.705		

6.2 R02 - Differences CFD and EFD

•		CFD - F	EFD, mo	del scale	CF	CFD - EFD, full scale				
		K_T	$10K_Q$	$\eta_{\rm O}$	K_T	$K_T = 10 K_Q$				
		[-]	[-]	[-]	[-]	[-]	[-]			
	0.60	-0.017	0.046	-0.025	0.0	00 0.04	4 -0.013			
	0.80	-0.021	0.034	-0.037	-0.0	03 0.03	6 -0.020			
	1.00	-0.032	0.006	-0.056	-0.0	11 0.01	9 -0.031			
	1.20	-0.045	-0.027	-0.089	-0.0	19 -0.00	4 -0.045			
	1.40	-0.050	-0.042	-0.155	-0.0	23 -0.02	1 -0.066			

6.3 R02 - Radial distribution tables

model scale

			K_T [-]		$10K_Q$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.009	0.009	0.007	0.004	0.001	0.016	0.015	0.013	0.007	0.001
0.400	0.029	0.025	0.019	0.010	0.002	0.062	0.058	0.049	0.034	0.017
0.500	0.047	0.041	0.033	0.022	0.010	0.105	0.100	0.087	0.068	0.043
0.600	0.070	0.060	0.049	0.035	0.020	0.163	0.151	0.132	0.106	0.075
0.700	0.097	0.082	0.066	0.048	0.030	0.233	0.208	0.178	0.144	0.104
0.800	0.126	0.103	0.080	0.057	0.036	0.304	0.260	0.214	0.169	0.124
0.900	0.152	0.111	0.081	0.055	0.032	0.363	0.277	0.214	0.161	0.116
0.975	0.083	0.057	0.034	0.018	0.008	0.195	0.143	0.094	0.060	0.037

full scale										
			K_T [-]				10K _Q [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.007	0.005	0.017	0.017	0.014	0.010	0.004
0.400	0.031	0.027	0.022	0.015	0.007	0.062	0.060	0.053	0.041	0.024
0.500	0.048	0.043	0.035	0.025	0.014	0.105	0.101	0.090	0.072	0.049
0.600	0.071	0.062	0.051	0.038	0.023	0.162	0.150	0.133	0.109	0.077
0.700	0.098	0.084	0.068	0.051	0.033	0.229	0.204	0.176	0.143	0.104
0.800	0.128	0.105	0.082	0.061	0.039	0.297	0.255	0.210	0.167	0.122
0.900	0.154	0.115	0.086	0.059	0.036	0.352	0.272	0.214	0.161	0.114
0.975	0.090	0.062	0.038	0.021	0.009	0.205	0.146	0.094	0.059	0.033

Differences full and model scale

		K_T [-]						$10K_Q$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40		
r/R [-]												
0.300	0.002	0.001	0.002	0.003	0.003	0.001	0.001	0.002	0.003	0.003		
0.400	0.001	0.002	0.003	0.005	0.005	0.000	0.002	0.004	0.007	0.007		
0.500	0.002	0.002	0.003	0.003	0.004	0.000	0.001	0.003	0.005	0.005		
0.600	0.002	0.002	0.002	0.003	0.004	-0.002	-0.001	0.001	0.002	0.003		
0.700	0.002	0.002	0.002	0.003	0.003	-0.005	-0.004	-0.002	-0.001	0.000		
0.800	0.002	0.002	0.002	0.003	0.004	-0.007	-0.005	-0.004	-0.002	-0.002		
0.900	0.002	0.004	0.005	0.005	0.005	-0.011	-0.005	0.000	0.000	-0.002		
0.975	0.008	0.005	0.003	0.002	0.002	0.010	0.003	0.000	-0.001	-0.003		

6.5 R02 - Questionaire part I

6.	5	R02 - Questionaire part I	model coole				
	~ -		model scale	full scale			
	Solve	er					
		Computational Domain					
	A1	Domain topology	1 rotating domain	1 rotating domain			
	A2	Grid-coupling technique	None	None			
		Propeller Representation					
	B1	Number of considered blades	1 blade, matching	1 blade, matching			
	C 1	Computational Grid	TT 1	YY			
	CI	Type	Unstructured	Unstructured			
	C2	Local-grid refinement	Possible - used here	Possible - used here			
	C3	Primary volume elements	Tetraheder	Tetraheder			
	C4	Primary surface elements	Mixed	Triangles			
	C5	Wall-boundary layer type	Prism Layer	Prism Layer			
	C7	Number of cells at boundary layer	0	0			
	C8	Y ⁺ -value at r/R=0.4, 0.7, 0.9	0	0			
	C9	Averaged Y^+ -value	0	0			
	C10	Number of cells on blade surface	0	0			
		Norm. Dim. the Physical Domain					
	D1	X_upstream/D, X_downstream/D	0	0			
	D2	Cross area of domain in prop. plain	0	0			
		Numerical Approximation					
	E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS			
	E2	Coordinates	Cartesian	Cartesian			
	E3	Convection scheme (momentum eq.)	high-order upwind	high-order upwind			
	E4	Transient approximation	implicit	implicit			
	E5	Spatial order of acc. (neglecting BC)	0	0			
	E6	Temporal order of accuracy	0	0			
	E7	Time step	0	0			
	E8	Equivalent rot. Angle for a time step	0	0			
	10	Equivalent four ringle for a time step	°	°			
		Turbulence treatment					
	F1	Model name	k-omega	k-omega			
	F2	Convection scheme (Turb. Eqn.)	high-order upwind	high-order upwind			
		Boundary conditions					
	G1	Blade	resolved	resolved			
	G2	Hub	-	-			
	G3	Inlet	Fixed Velocity	Fixed Velocity			
	G4	Outlet	Fixed Pressure	Fixed Pressure			
	G5	Outer domain	Slip flow	Slip flow			
			··· I ··	··· r ··· ··			

		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	Coupled	Coupled
	Transition		
Ι		0 / 0	0 / 0
	Please comment		
	Computational Demands		
J1	Number of processors used	0	0
J2	Number of timesteps (steady)	0	0
J3	Number of timesteps (transient)	0	0
J4	Wall-clock time per revolution	0	0
	Code		
Κ	References	0 / 0	0 / 0
	Comments		
L	Add. info.	0 / 0	0 / 0

6.5 R02 - Questionaire part II

7.1 R03 - Open water characteristic

		CFI), model :	scale	(CFD, full scale			
	J	$K_T = 10K_Q$		$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$		
	[-]	[-]	[-]	[-]	[-]	[-]	[-]		
_	0.600	0.625	1.422	0.420	0.640	1.442	0.424		
	0.800	0.510	1.215	0.535	0.515	1.211	0.542		
	1.000	0.396	1.000	0.631	0.395	0.989	0.636		
	1.200	0.287	0.781	0.701	0.283	0.771	0.701		
	1.400	0.170	0.539	0.701	0.172	0.536	0.715		

7.2 R03 - Differences CFD and EFD

	CFD - EFD, mo	del scale	CFD - EFD, full scale			
	$K_T = 10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q \eta_0$		
	[-] [-]	[-]	[-]	[-] [-]		
0.60	-0.004 0.026	-0.010	0.009	0.057 -0.011		
0.80	0.000 0.037	-0.016	0.003	0.043 -0.017		
1.00	-0.003 0.025	-0.021	-0.006	0.024 -0.027		
1.20	-0.008 0.005	-0.025	-0.014	0.005 -0.039		
1.40	-0.018 -0.020	-0.048	-0.018	-0.013 -0.055		

7.3 R03 - Radial distribution tables

model scale

	K_T [-]					$10K_Q$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.006	0.004	0.017	0.016	0.014	0.009	0.003
0.400	0.031	0.027	0.023	0.016	0.008	0.061	0.060	0.054	0.043	0.024
0.500	0.049	0.045	0.037	0.028	0.015	0.107	0.105	0.097	0.078	0.051
0.600	0.072	0.065	0.054	0.042	0.025	0.164	0.157	0.140	0.118	0.081
0.700	0.094	0.082	0.067	0.050	0.030	0.225	0.206	0.178	0.146	0.103
0.800	0.128	0.107	0.086	0.064	0.042	0.300	0.260	0.217	0.174	0.129
0.900	0.150	0.114	0.087	0.060	0.037	0.343	0.269	0.212	0.158	0.115
0.975	0.090	0.060	0.035	0.020	0.010	0.205	0.141	0.087	0.055	0.033

full scale										
			K_T [-]		$10K_{O}$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.012	0.010	0.008	0.006	0.004	0.017	0.016	0.013	0.009	0.002
0.400	0.031	0.027	0.021	0.015	0.007	0.061	0.058	0.051	0.040	0.023
0.500	0.049	0.043	0.035	0.026	0.015	0.105	0.099	0.089	0.073	0.049
0.600	0.071	0.062	0.051	0.039	0.024	0.160	0.148	0.132	0.109	0.078
0.700	0.099	0.084	0.069	0.052	0.034	0.227	0.203	0.176	0.144	0.107
0.800	0.129	0.106	0.084	0.062	0.041	0.299	0.257	0.214	0.172	0.127
0.900	0.156	0.117	0.088	0.061	0.038	0.356	0.275	0.220	0.166	0.117
0.975	0.095	0.066	0.038	0.021	0.010	0.218	0.153	0.095	0.058	0.034

Differences full and model scale

K_T [-]						$10K_{Q}$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	-0.001	-0.002
0.400	0.001	0.000	-0.001	-0.001	0.000	0.000	-0.002	-0.004	-0.003	-0.001
0.500	0.000	-0.002	-0.002	-0.002	0.000	-0.002	-0.006	-0.008	-0.005	-0.002
0.600	0.000	-0.003	-0.003	-0.003	-0.001	-0.004	-0.009	-0.009	-0.009	-0.003
0.700	0.004	0.002	0.002	0.002	0.004	0.002	-0.003	-0.002	-0.002	0.004
0.800	0.000	-0.001	-0.002	-0.002	-0.001	-0.001	-0.004	-0.004	-0.003	-0.002
0.900	0.005	0.003	0.002	0.001	0.000	0.013	0.007	0.008	0.008	0.002
0.975	0.005	0.005	0.003	0.001	0.000	0.013	0.012	0.007	0.003	0.001

7.5 R03 - Questionaire part I

_		model scale	full scale		
Solv	er	STAR-CCM+	STAR-CCM+		
	Computational Domain				
A1	Domain topology	1 rotating domain	1 rotating domain		
A2	Grid-coupling technique	None	None		
	Propeller Representation				
B1	Number of considered blades	Complete propeller	Complete propeller		
_					
	Computational Grid				
C1	Туре	Unstructured	Unstructured		
C2	Local-grid refinement	Possible - used here	Possible - used here		
C3	Primary volume elements	Hexahedral	Hexahedral		
C4	Primary surface elements	Triangles	Triangles		
C5	Wall-boundary layer type	Prism Layer	Prism Layer		
C7	Number of cells at boundary layer	0	0		
C8	Y^+ -value at r/R=0.4, 0.7, 0.9	0,35 0,45 0,65	40 55 65		
C9	Averaged Y^{+} -value	0.45	45		
C10	Number of cells on blade surface	0	0		
	Norm. Dim. the Physical Domain				
D1	X_upstream/D, X_downstream/D	3, 8	3, 8		
D2	Cross area of domain in prop. plain	64	64		
	Numerical Approximation				
E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS		
E2	Coordinates	Cartesian	Cartesian		
E3	Convection scheme (momentum eq.)	2nd-order centered	2nd-order centered		
E4	Transient approximation	implicit	implicit		
E5	Spatial order of acc. (neglecting BC)	0	0		
E6	Temporal order of accuracy	0	0		
E7	Time step	0	0		
E8	Equivalent rot. Angle for a time step	0	0		
	Turbulence treatment				
F1	Model name	k-omega	k-omega		
F2	Convection scheme (Turb. Eqn.)	2nd-order centered	2nd-order centered		
	Boundary conditions				
G1	Blade	resolved	wall function		
G2	Hub	wall function	wall function		
G3	Inlet	Fixed Velocity	Fixed Velocity		
G4	Outlet	Fixed Pressure	Fixed Pressure		
G5	Outer domain	resolved	resolved		

		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
Ι		gamma re theta model	no
	Please comment		
	Computational Demands		
J1	Number of processors used	0	0
J2	Number of timesteps (steady)	0	0
J3	Number of timesteps (transient)	0	0
J4	Wall-clock time per revolution	0	0
	Code		
K	References	Star-CCM+ / 0	Star-CCM+ / 0
_	Comments		
L	Add. info.	0 / 0	0 / 0

7.5 R03 - Questionaire part II

8.1 R04 - Open water characteristic

_		CFI), model :	scale	(CFD, full scale			
	J	$K_T = 10K_Q$		$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$		
	[-]	[-]	[-]	[-]	[-]	[-]	[-]		
	0.600	0.624	1.394	0.427	0.629	1.393	0.431		
	0.800	0.506	1.175	0.548	0.514	1.184	0.553		
	1.000	0.394	0.972	0.646	0.403	0.982	0.653		
	1.200	0.291	0.778	0.715	0.299	0.787	0.727		
	1.400	0.186	0.561	0.741	0.197	0.576	0.761		

8.2 R04 - Differences CFD and EFD

	CFD - EFD, model scale	CFD - EFD, full scale			
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$			
	[-] [-] [-]	[-] [-] [-]			
0.60	-0.005 -0.002 -0.003	-0.002 0.007 -0.004			
0.80	-0.004 -0.003 -0.003	0.002 0.016 -0.006			
1.00	-0.005 -0.003 -0.006	0.002 0.018 -0.009			
1.20	-0.004 0.002 -0.011	0.002 0.021 -0.014			
1.40	-0.001 0.002 -0.008	0.007 0.027 -0.010			

J [-]

9.1 R05 - Open water characteristic

	CFI), model :	scale		CFD, full scale			
J	$K_T = 10K_Q$		$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$		
 [-]	[-]	[-]	[-]	[-]	[-]	[-]		
 0.600	0.617	1.425	0.413	0.615	1.388	0.423		
0.800	0.505	1.224	0.525	0.508	1.191	0.543		
1.000	0.396	1.022	0.616	0.403	1.005	0.638		
1.200	0.286	0.813	0.672	0.298	0.797	0.714		
 1.400	0.176	0.583	0.671	0.193	0.577	0.747		

-0.020 -0.040

-0.060 -0.080 -0.100

0.60

0.80

1.00

J[-]

1.20

1.40

9.2 R05 - Differences CFD and EFD

_		CFD - E	FD, mo	del scale	CFD -	CFD - EFD, full scale				
		K_T	$10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$			
_		[-]	[-]	[-]	[-]	[-]	[-]			
	0.60	-0.012	0.029	-0.017	-0.016	0.002	-0.012			
	0.80	-0.005	0.046	-0.026	-0.004	0.023	-0.016			
	1.00	-0.004	0.047	-0.036	0.001	0.041	-0.025			
	1.20	-0.009	0.037	-0.054	0.001	0.031	-0.026			
_	1.40	-0.012	0.025	-0.078	0.004	0.028	-0.023			

9.3 R05 - Radial distribution tables

model scale

			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.012	0.011	0.010	0.008	0.007	0.019	0.020	0.018	0.015	0.010
0.400	0.030	0.027	0.022	0.016	0.009	0.061	0.060	0.055	0.045	0.031
0.500	0.047	0.042	0.035	0.026	0.015	0.106	0.102	0.092	0.076	0.054
0.600	0.071	0.062	0.051	0.038	0.024	0.165	0.154	0.136	0.113	0.083
0.700	0.098	0.084	0.069	0.052	0.034	0.233	0.211	0.183	0.151	0.113
0.800	0.128	0.106	0.084	0.062	0.040	0.304	0.263	0.221	0.179	0.132
0.900	0.154	0.118	0.089	0.062	0.037	0.360	0.287	0.228	0.174	0.122
0.975	0.078	0.054	0.035	0.021	0.010	0.177	0.129	0.090	0.060	0.037

full scale										
			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.013	0.012	0.011	0.010	0.009	0.020	0.021	0.020	0.017	0.014
0.400	0.030	0.028	0.024	0.019	0.013	0.061	0.060	0.056	0.048	0.036
0.500	0.047	0.043	0.036	0.027	0.017	0.104	0.100	0.092	0.077	0.058
0.600	0.070	0.062	0.052	0.040	0.026	0.160	0.149	0.134	0.111	0.083
0.700	0.097	0.084	0.070	0.053	0.036	0.226	0.204	0.179	0.147	0.111
0.800	0.127	0.106	0.085	0.064	0.042	0.294	0.254	0.216	0.173	0.128
0.900	0.152	0.118	0.090	0.063	0.039	0.348	0.277	0.221	0.167	0.115
0.975	0.079	0.055	0.036	0.021	0.011	0.175	0.126	0.086	0.055	0.033

Differences full and model scale

			K_T [-]				$10K_Q$	[-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.003
0.400	0.001	0.001	0.001	0.002	0.003	0.000	0.001	0.002	0.003	0.006
0.500	0.000	0.000	0.001	0.002	0.003	-0.002	-0.002	0.000	0.001	0.003
0.600	-0.001	0.000	0.001	0.001	0.002	-0.005	-0.004	-0.002	-0.001	0.001
0.700	-0.001	0.000	0.001	0.001	0.002	-0.008	-0.007	-0.003	-0.003	-0.002
0.800	-0.001	0.000	0.001	0.001	0.002	-0.010	-0.009	-0.005	-0.006	-0.005
0.900	-0.001	0.000	0.001	0.002	0.002	-0.012	-0.010	-0.007	-0.008	-0.007
0.975	0.001	0.001	0.001	0.001	0.001	-0.002	-0.004	-0.004	-0.005	-0.005

9.5 R05 - Questionaire part I

		model scale	full scale
Sol	ver		
	Computational Domain		
A1	Domain topology	Multiple domains	Multiple domains
A2	Grid-coupling technique	Multiple ref. frames	Multiple ref. frames
	Propeller Representation		
B1	Number of considered blades	Complete propeller	Complete propeller
	Computational Grid		
C1	Type	Unstructured	Unstructured
C2	Local-grid refinement	Possible - used here	Possible - used here
C3	Primary volume elements	Tetraheder	Tetraheder
C4	Primary surface elements	Triangles	Triangles
C5	Wall-boundary layer type	-	-
C7	Number of cells at boundary layer	none	none
C8	Y^+ -value at r/R=0.4, 0.7, 0.9	35.45.50	1200, 1500, 1800
C9	Averaged Y ⁺ -value	48	1400
C10) Number of cells on blade surface	80000	80000
	Norm. Dim. the Physical Domain		
D1	X_upstream/D, X_downstream/D	30D, 60D	30D, 60D
D2	Cross area of domain in prop. plain	3600	3600
	Numerical Approximation		
E 1	Finite Approximation Scheme (Eluid	EV NG	EV NS
	Coordinates	rv-INS Contacion	F V-INS Contracion
E2 E2	Convection scheme (momentum eq.)	high order unwind	bigh order upwind
	Transient approximation	implicit	implicit
E4 E5	Spatial order of acc. (noglocting BC)	doublo	double
EJ E6	Temporal order of accuracy	0	0
E0 F7	Time step	0	0
E7 E8	Equivalent rot Angle for a time sten	0	0
Lo	Equivalent for. Angle for a time step	0	0
	Turbulence treatment		
F1	Model name	k-epsilon	k-epsilon
F2	Convection scheme (Turb. Eqn.)	high-order upwind	high-order upwind
	Boundary conditions		
G1	Blade	wall function	wall function
G2	Hub	wall function	wall function
G3	Inlet	Fixed Velocity	Fixed Velocity
G4	Outlet	Fixed Pressure	Fixed Pressure
G5	Outer domain	Slip flow	Slip flow

		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	Coupled	Coupled
	Transition		
Ι		0 / 0	0 / 0
	Please comment		
	Computational Demands		
J1	Number of processors used	11	11
J2	Number of timesteps (steady)	3500	3500
J3	Number of timesteps (transient)	0	0
J4	Wall-clock time per revolution	6.86	6.86
	Code		
Κ	References	0 / 0	0 / 0
-	Comments		0.40
L	Add. info.	0 / 0	0 / 0

9.5 R05 - Questionaire part II

10.1 R06 - Open water characteristic

	CFI), model	scale		CFD, full scale				
J	K_T	$10K_Q$	$\eta_{\rm O}$	ŀ	X_T	$10K_Q$	$\eta_{\rm O}$		
 [-]	[-]	[-]	[-]		[-]	[-]	[-]		
 0.600	0.618	1.431	0.413	0.0	535	1.425	0.425		
0.800	0.492	1.196	0.524	0.:	515	1.207	0.543		
1.000	0.372	0.973	0.608	0.4	401	0.998	0.640		
1.200	0.257	0.752	0.653	0.2	293	0.790	0.708		
 1.400	0.139	0.518	0.597	0.	189	0.584	0.721		

10.2 R06 - Differences CFD and EFD

	CFD - EFD, model scale	CFD - EFD, full scale				
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$				
	[-] [-] [-]	[-] [-] [-]				
0.60	-0.010 0.034 -0.017	0.004 0.039 -0.009				
0.80	-0.018 0.018 -0.027	0.003 0.039 -0.015				
1.00	-0.027 -0.001 -0.044	-0.001 0.033 -0.023				
1.20	-0.038 -0.024 -0.073	-0.004 0.024 -0.032				
1.40	-0.049 -0.041 -0.151	-0.001 0.036 -0.050				

10.3 R06 - Radial distribution tables

model scale

			K_T [-]				10K _Q [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.010	0.009	0.007	0.005	0.003	0.016	0.015	0.012	0.008	0.002
0.400	0.029	0.025	0.020	0.013	0.005	0.059	0.056	0.049	0.037	0.019
0.500	0.047	0.041	0.033	0.023	0.010	0.104	0.098	0.087	0.069	0.044
0.600	0.069	0.060	0.049	0.035	0.019	0.162	0.150	0.132	0.108	0.076
0.700	0.096	0.081	0.065	0.047	0.027	0.228	0.205	0.176	0.142	0.104
0.800	0.127	0.102	0.079	0.057	0.035	0.301	0.253	0.209	0.168	0.125
0.900	0.152	0.114	0.083	0.056	0.031	0.353	0.275	0.213	0.159	0.112
0.975	0.089	0.061	0.037	0.021	0.009	0.207	0.145	0.095	0.061	0.036

full scale										
			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.012	0.011	0.010	0.008	0.007	0.018	0.018	0.016	0.013	0.011
0.400	0.031	0.028	0.024	0.018	0.013	0.061	0.062	0.057	0.048	0.040
0.500	0.048	0.044	0.037	0.028	0.018	0.105	0.102	0.093	0.080	0.062
0.600	0.071	0.063	0.052	0.040	0.025	0.162	0.151	0.135	0.114	0.087
0.700	0.099	0.084	0.069	0.053	0.034	0.229	0.205	0.177	0.147	0.111
0.800	0.130	0.105	0.083	0.063	0.042	0.299	0.251	0.211	0.171	0.129
0.900	0.155	0.120	0.089	0.062	0.038	0.349	0.277	0.216	0.162	0.114
0.975	0.090	0.061	0.038	0.021	0.010	0.201	0.140	0.091	0.056	0.031

Differences full and model scale

			K_T [-]				$10K_Q$	[-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.002	0.003	0.003	0.004	0.001	0.003	0.004	0.005	0.009
0.400	0.002	0.003	0.004	0.005	0.009	0.003	0.006	0.008	0.011	0.021
0.500	0.002	0.003	0.004	0.005	0.008	0.002	0.004	0.006	0.010	0.018
0.600	0.002	0.002	0.003	0.005	0.007	0.000	0.002	0.003	0.006	0.011
0.700	0.003	0.003	0.004	0.005	0.007	0.001	0.000	0.001	0.004	0.006
0.800	0.003	0.003	0.004	0.006	0.007	-0.002	-0.002	0.002	0.004	0.004
0.900	0.003	0.006	0.006	0.006	0.007	-0.004	0.002	0.003	0.003	0.002
0.975	0.001	0.001	0.001	0.000	0.001	-0.006	-0.005	-0.004	-0.005	-0.004

10.5 R06 - Questionaire part I

п).5	Roo - Questionaire part i	model scale	full scale
	Solv	er	ANSYS FLUENT	ANSYS FLUENT
		Computational Domain		
	A1	Domain topology	1 rotating domain	1 rotating domain
	A2	Grid-coupling technique	None	None
		Propeller Representation		
	B1	Number of considered blades	1 blade, matching	1 blade, matching
				_
		Computational Grid		
	C1	Туре	Unstructured	Unstructured
	C2	Local-grid refinement	Possible - used here	Possible - used here
	C3	Primary volume elements	Tetraheder	Tetraheder
	C4	Primary surface elements	Triangles	Triangles
	C5	Wall-boundary layer type	Prism Layer	Prism Layer
	C7	Number of cells at boundary layer	10	10
	C8	Y^+ -value at r/R=0.4, 0.7, 0.9	17, 21, 27 (J=1.0)	15, 18, 23 (J=1.0)
	C9	Averaged Y ⁺ -value	22 (J=1.0)	18 (J=1.0)
	C10	Number of cells on blade surface	18488 (back)	18488 (back) +
			17994 (face+tip) = 36482	17994 (face+tip) = 36482
		Norm. Dim. the Physical Domain		
	D1	X_upstream/D, X_downstream/D	4, 8	4, 8
	D2	Cross area of domain in prop. plain	16	16
		Numerical Approximation		
	E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS
	E2	Coordinates	Cartesian	Cartesian
	E3	Convection scheme (momentum eq.)	high-order upwind	high-order upwind
	E4	Transient approximation	-	-
	E5	Spatial order of acc. (neglecting BC)	2nd-order	2nd-order
	E6	Temporal order of accuracy	N/A	N/A
	E7	Time step	N/A	N/A
	E8	Equivalent rot. Angle for a time step	N/A	N/A
	-	Turbulence treatment		
	F1	Model name	k-omega	k-omega
	F2	Convection scheme (Turb. Eqn.)	high-order upwind	high-order upwind
	C 1	Boundary conditions	11.0	11.0
	GI	Blade	wall function	wall function
	G2	HUD	wall function	wall function
	G3		Fixed Velocity	Fixed Velocity
	G4	Outlet	Fixed Pressure	Fixed Pressure
	G5	Outer domain	-	-

10.0		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
Ι		no / 0	0 / 0
	Please comment		
	Computational Demands		
J1	Number of processors used	32	32
J2	Number of timesteps (steady)	5000	5000 ~ 8000, more iteration
J3	Number of timesteps (transient)	N/A	N/A
J4	Wall-clock time per revolution	approx. 1 hr / 4000 iters.	approx. 1 hr / 4000 iters.
	Code		
K	References	FLUENT 6.3	FLUENT 6.3
	Comments		
L	Add. info.	FLUENT 6.3 / 0	FLUENT 6.3 / 0

10.5 R06 - Questionaire part II

11.1 R07 - Open water characteristic

-		CFI), model :	scale		CFD, full scale			
	J	K_T	$10K_Q$	$\eta_{\rm O}$		K_T	$10K_Q$	$\eta_{\rm O}$	
_	[-]	[-]	[-]	[-]		[-]	[-]	[-]	
_	0.600	0.624	1.410	0.423	0	.644	1.414	0.435	
	0.800	0.498	1.184	0.535	0	.512	1.183	0.551	
	1.000	0.375	0.961	0.621	0	.390	0.966	0.643	
	1.200	0.262	0.742	0.673	0	.279	0.751	0.708	
_	1.400	0.149	0.506	0.658	0	.170	0.515	0.734	

11.2 R07 - Differences CFD and EFD

	CFD - EFD, model scale	CFD - EFD, full scale
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$
	[-] [-] [-]	[-] [-] [-]
0.60	-0.004 0.014 -0.007	0.013 0.028 0.000
0.80	-0.012 0.006 -0.016	0.000 0.015 -0.007
1.00	-0.024 -0.013 -0.031	-0.011 0.001 -0.020
1.20	-0.033 -0.034 -0.052	-0.018 -0.015 -0.032
1.40	-0.038 -0.053 -0.091	-0.020 -0.034 -0.036

11.3 R07 - Radial distribution tables

model scale

			K_T [-]		$10K_Q$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.010	0.009	0.007	0.004	0.002	0.015	0.014	0.012	0.007	0.000
0.400	0.030	0.026	0.020	0.013	0.004	0.059	0.056	0.049	0.036	0.018
0.500	0.047	0.041	0.033	0.022	0.010	0.101	0.096	0.084	0.065	0.039
0.600	0.069	0.060	0.050	0.037	0.023	0.156	0.146	0.130	0.107	0.078
0.700	0.100	0.084	0.067	0.049	0.030	0.231	0.207	0.177	0.142	0.101
0.800	0.128	0.104	0.081	0.059	0.038	0.296	0.254	0.211	0.168	0.122
0.900	0.146	0.112	0.083	0.057	0.034	0.335	0.266	0.211	0.159	0.112
0.975	0.095	0.061	0.034	0.019	0.009	0.217	0.145	0.088	0.057	0.035

full scale										
			K_T [$10K_{O}$ [-]						
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.005	0.004	0.017	0.016	0.013	0.008	0.002
0.400	0.032	0.028	0.022	0.015	0.008	0.062	0.060	0.052	0.040	0.023
0.500	0.049	0.043	0.034	0.024	0.013	0.104	0.098	0.086	0.068	0.043
0.600	0.071	0.062	0.052	0.039	0.025	0.157	0.147	0.131	0.109	0.081
0.700	0.101	0.086	0.069	0.052	0.033	0.230	0.206	0.177	0.144	0.104
0.800	0.129	0.106	0.083	0.062	0.040	0.290	0.250	0.209	0.167	0.122
0.900	0.150	0.117	0.086	0.060	0.036	0.329	0.268	0.211	0.159	0.108
0.975	0.101	0.061	0.035	0.020	0.010	0.224	0.139	0.086	0.056	0.032

Differences full and model scale

			K_T [-]		$10K_Q$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.002
0.400	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.005	0.005
0.500	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.003	0.004
0.600	0.002	0.002	0.002	0.002	0.003	0.001	0.001	0.001	0.002	0.002
0.700	0.001	0.002	0.002	0.003	0.003	0.000	0.000	0.001	0.002	0.003
0.800	0.001	0.001	0.002	0.002	0.003	-0.006	-0.004	-0.002	-0.001	-0.001
0.900	0.003	0.005	0.003	0.003	0.003	-0.005	0.002	0.000	-0.001	-0.004
0.975	0.006	0.000	0.001	0.001	0.001	0.007	-0.006	-0.002	-0.002	-0.004

11.5 R07 - Questionaire part I

11	1.5	K07 - Questionaire part I		lo
			model scale	full scale
	Solve	er		
		Computational Domain		
	A1	Domain topology	-	-
	A2	Grid-coupling technique	-	-
		Propeller Representation		
	B1	Number of considered blades	-	-
		Computational Grid		
	C1	Туре	-	_
	C2	Local-grid refinement	_	_
	C3	Primary volume elements	_	_
	C4	Primary surface elements		
	C5	Wall boundary layer type		
	C_{7}	Number of calls at houndary layer	0	-
	C^{0}	Number of certs at boundary layer \mathbf{X}^+ volue at $\pi/\mathbf{P}=0.4$, 0.7, 0.0	0	0
		1 -value at $1/R=0.4$, 0.7, 0.9 Averaged V^+ value	0	1
	C9	Averaged 1 -value	1	1
	C10	Number of cells on blade surface	9800	11300
		Norm. Dim. the Physical Domain	_	
	D1	X_upstream/D, X_downstream/D	2	2
	D2	Cross area of domain in prop. plain	4	4
		Numerical Approximation		
	E1	Finite Approximation Scheme (Fluid)	-	-
	E2	Coordinates	-	-
	E3	Convection scheme (momentum eq.)	-	-
	E4	Transient approximation	-	-
	E5	Spatial order of acc. (neglecting BC)	2	2
	E6	Temporal order of accuracy	0	0
	E7	Time step	0	0
	E8	Equivalent rot. Angle for a time step	0	0
_		Turbulence treatment		
	F1	Model name	-	-
	F2	Convection scheme (Turb, Eqn.)	_	_
		Boundary conditions		
	G1	Blade	-	-
	G2	Hub	-	-
	G3	Inlet	please select	nlease select
	G4	Outlet	nlease select	nlease select
	04 C5	Outer domain	picase select	picase serect
	00	Outer uomani	-	-

	Lie, Questionane Part II	model scale	full scale	
	Computational Model			
H1	Fluid	-	-	
H2	Pressure	-	-	
	Transition			
Ι		0 / 0	0 / 0	
	Please comment			
	Computational Demands			
J1	Number of processors used	32	32	
J2	Number of timesteps (steady)	0	0	
J3	Number of timesteps (transient)	0	0	
J4	Wall-clock time per revolution	0	0	
,1	Code			
Κ	References	0 / 0	0 / 0	
	Comments			
L	Add. info.	0 / 0	0 / 0	

11.5 R07 - Questionaire part II

12.1 R08 - Open water characteristic

		CFI), model :	scale	CFD, full scale			
	J	K_T	$10K_Q$	$\eta_{\rm O}$	K_{2}	$10K_Q$	$\eta_{\rm O}$	
	[-]	[-]	[-]	[-]	[-]	[-]	[-]	
	0.600	0.615	1.394	0.421	0.63	1.383	0.435	
	0.800	0.491	1.173	0.533	0.50	1.167	0.551	
	1.000	0.372	0.958	0.618	0.38	0.957	0.643	
	1.200	0.261	0.744	0.671	0.27	0.749	0.712	
_	1.400	0.151	0.511	0.659	0.17	0.515	0.741	

0.000

-0.020 -0.040

-0.060 -0.080 -0.100

0.60

0.80

12.2 R08 - Differences CFD and EFD

	CFD - EFD, model scale	CFD - EFD, full scale				
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$				
	[-] [-] [-]	[-] [-] [-]				
0.60	-0.014 -0.002 -0.009	-0.001 -0.003 0.000				
0.80	-0.019 -0.005 -0.018	-0.007 0.000 -0.008				
1.00	-0.027 -0.017 -0.034	-0.015 -0.008 -0.019				
1.20	-0.034 -0.032 -0.055	-0.018 -0.017 -0.029				
1.40	-0.037 -0.048 -0.090	-0.018 -0.034 -0.030				

1.00 J[-] 1.20

1.40

12.3 R08 - Radial distribution tables

model scale

			K_T [-]	$10K_Q$ [-]					
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.010	0.008	0.007	0.004	0.002	0.015	0.014	0.012	0.007	0.000
0.400	0.029	0.025	0.019	0.012	0.004	0.059	0.055	0.048	0.035	0.017
0.500	0.047	0.041	0.033	0.023	0.012	0.102	0.097	0.086	0.069	0.044
0.600	0.070	0.061	0.050	0.036	0.021	0.159	0.147	0.130	0.106	0.075
0.700	0.097	0.082	0.066	0.050	0.031	0.225	0.202	0.174	0.142	0.104
0.800	0.127	0.103	0.080	0.059	0.038	0.295	0.251	0.209	0.168	0.123
0.900	0.144	0.112	0.083	0.057	0.034	0.330	0.266	0.211	0.160	0.113
0.975	0.091	0.059	0.034	0.019	0.009	0.209	0.141	0.088	0.058	0.036

full scale										
			K_T [$10K_{O}$ [-]						
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.009	0.008	0.006	0.004	0.016	0.015	0.013	0.008	0.002
0.400	0.031	0.027	0.022	0.016	0.008	0.061	0.058	0.052	0.040	0.023
0.500	0.049	0.043	0.035	0.026	0.014	0.104	0.099	0.088	0.071	0.048
0.600	0.071	0.062	0.051	0.039	0.024	0.159	0.147	0.130	0.107	0.076
0.700	0.098	0.083	0.068	0.052	0.034	0.222	0.200	0.173	0.142	0.104
0.800	0.127	0.104	0.082	0.062	0.041	0.288	0.247	0.207	0.167	0.122
0.900	0.146	0.116	0.086	0.060	0.037	0.322	0.266	0.210	0.159	0.109
0.975	0.096	0.060	0.034	0.020	0.010	0.212	0.135	0.084	0.055	0.031

Differences full and model scale

	K_T [-]			$10K_Q$ [-]						
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.002
0.400	0.002	0.002	0.003	0.003	0.004	0.002	0.003	0.004	0.005	0.006
0.500	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.003	0.003
0.600	0.001	0.001	0.002	0.002	0.002	0.000	0.000	0.000	0.001	0.002
0.700	0.001	0.001	0.002	0.002	0.003	-0.003	-0.002	-0.001	0.000	0.000
0.800	0.001	0.001	0.002	0.003	0.003	-0.007	-0.004	-0.002	-0.001	-0.001
0.900	0.002	0.004	0.003	0.003	0.003	-0.008	0.000	-0.001	-0.001	-0.004
0.975	0.005	0.001	0.001	0.001	0.001	0.003	-0.005	-0.004	-0.003	-0.004

12.5 R08 - Questionaire part I

12	2.5	R08 - Questionaire part I		le n
	~ -		model scale	full scale
	Solve	er	ANSYS CFX	ANSYS CFX
		Computational Domain		
	Al	Domain topology	I rotating domain	I rotating domain
	A2	Grid-coupling technique	Multiple ref. frames	Multiple ref. frames
		Propeller Representation		
	BI	Number of considered blades	l blade, non-matching	l blade, non-matching
		Commutational Crid		
	C 1	Computational Grid	C /	C /
		Type		Structured
	C2	Local-grid refinement	Possible - not used here	Possible - not used here
	C3	Primary volume elements	Hexahedral	Hexahedral
	C4	Primary surface elements	Quads	Quads
	C5	Wall-boundary layer type	Hex Layer	Hex Layer
	C7	Number of cells at boundary layer	20	20
	C8	Y^+ -value at r/R=0.4, 0.7, 0.9	0	0
	C9	Averaged Y^+ -value	0.53	2.5
	C10	Number of cells on blade surface	5369	5369
		Norm. Dim. the Physical Domain		
	D1	X_upstream/D, X_downstream/D	20, 50	20,50
	D2	Cross area of domain in prop. plain	900	900
		Numerical Approximation		
	E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS
	E2	Coordinates	Cartesian	Cartesian
	E3	Convection scheme (momentum eq.)	2nd-order centered	2nd-order centered
	E4	Transient approximation	-	-
	E5	Spatial order of acc. (neglecting BC)	2nd-order	2nd-order
	E6	Temporal order of accuracy	N/A	N/A
	E7	Time step	N/A	N/A
	E8	Faujvalent rot Angle for a time step	N/A	N/A
	LO	Equivalent for. Aligie for a time step	1 1 7 1	1 1/ 1 1
		Turbulence treatment		
	F1	Model name	k-omega	k-omega
	F2	Convection scheme (Turb Ean)	2nd-order centered	2nd-order centered
	1 -			
		Boundary conditions		
	G1	Blade	resolved	resolved
	G2	Hub	resolved	resolved
	G3	Inlet	Fixed Velocity	Fixed Pressure
	G4	Outlet	Fixed Pressure	Fixed Pressure
	G5	Outer domain	Slin flow	Slip flow
		S week wommin	~r 110 !!	~~r 110 !!

12.0	Roo Questionare part II	model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	Coupled	Coupled
	Transition		
I		no / 0	0 / 0
	Please comment		
1	Computational Demands		
J1	Number of processors used	0	0
J2	Number of timesteps (steady)	0	0
J3	Number of timesteps (transient)	0	0
J4	Wall-clock time per revolution	0	0
1	Code		
Κ	References	ANSYS CFX 13.0	ANSYS CFX 13.0
	Comments		
L	Add. info.	0 / 0	0 / 0
		1	

12.5 R08 - Questionaire part II

13.1 R10 - Open water characteristic

	CFD, model scale			CF	CFD, full scale K_T $10K_Q$ η_O [-] [-] [-] 647 1.458 0.424		
J	K_T	$10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$	
 [-]	[-]	[-]	[-]	[-]	[-]	[-]	
 0.600	0.634	1.456	0.416	0.647	1.458	0.424	
0.800	0.504	1.211	0.529	0.521	1.224	0.542	
1.000	0.379	0.978	0.618	0.400	0.997	0.639	
1.200	0.262	0.747	0.671	0.286	0.773	0.707	
 1.400	0.150	0.509	0.657	0.176	0.538	0.728	

-0.080 -0.100

0.60

13.2 R10 - Differences CFD and EFD

	CFD - EFD, mo	del scale	CFD - I	EFD, full scale
	$K_T = 10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q \eta_0$
	[-] [-]	[-]	[-]	[-] [-]
0.60	0.005 0.060	-0.014	0.016	0.072 -0.011
0.80	-0.006 0.033	-0.022	0.009	0.057 -0.016
1.00	-0.020 0.003	-0.034	-0.001	0.032 -0.024
1.20	-0.033 -0.029	-0.055	-0.011	0.007 -0.033
1.40	-0.038 -0.050	-0.092	-0.014	-0.011 -0.042

0.80

1.00

J[-]

1.20

1.40

13.3 R10 - Radial distribution tables

model scale

			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.010	0.009	0.007	0.005	0.003	0.016	0.015	0.013	0.008	0.002
0.400	0.029	0.025	0.019	0.012	0.004	0.058	0.055	0.047	0.035	0.018
0.500	0.047	0.041	0.033	0.023	0.011	0.102	0.096	0.085	0.068	0.043
0.600	0.069	0.060	0.049	0.036	0.020	0.159	0.147	0.129	0.104	0.073
0.700	0.099	0.084	0.068	0.050	0.031	0.232	0.207	0.178	0.144	0.104
0.800	0.130	0.106	0.082	0.059	0.037	0.308	0.260	0.213	0.168	0.122
0.900	0.161	0.119	0.085	0.058	0.034	0.376	0.286	0.218	0.162	0.112
0.975	0.089	0.061	0.036	0.020	0.009	0.206	0.145	0.094	0.058	0.035

full scale										
			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.007	0.005	0.017	0.016	0.014	0.010	0.005
0.400	0.031	0.027	0.022	0.016	0.008	0.061	0.059	0.053	0.042	0.026
0.500	0.049	0.043	0.036	0.026	0.015	0.105	0.100	0.090	0.073	0.050
0.600	0.071	0.062	0.052	0.039	0.024	0.160	0.150	0.132	0.109	0.078
0.700	0.100	0.086	0.070	0.053	0.035	0.231	0.208	0.180	0.147	0.108
0.800	0.131	0.108	0.085	0.062	0.041	0.305	0.259	0.214	0.170	0.124
0.900	0.161	0.122	0.089	0.062	0.038	0.368	0.285	0.219	0.164	0.113
0.975	0.092	0.064	0.039	0.021	0.010	0.210	0.147	0.094	0.057	0.033

			K_T [-]				10K _Q	[-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.002	0.003
0.400	0.002	0.002	0.003	0.004	0.004	0.003	0.004	0.006	0.007	0.009
0.500	0.002	0.002	0.003	0.003	0.004	0.003	0.004	0.005	0.006	0.007
0.600	0.002	0.002	0.003	0.003	0.004	0.001	0.002	0.003	0.004	0.005
0.700	0.001	0.002	0.003	0.003	0.004	0.000	0.001	0.002	0.003	0.004
0.800	0.001	0.002	0.003	0.003	0.004	-0.003	-0.001	0.001	0.002	0.002
0.900	0.000	0.003	0.004	0.004	0.004	-0.007	-0.001	0.001	0.002	0.001
0.975	0.004	0.003	0.002	0.002	0.001	0.004	0.002	0.000	-0.001	-0.002

13.5 R10 - Questionaire part I

			model scale	full scale	
	Solve	er			
		Computational Domain			
1	A1	Domain topology	Multiple domains	Multiple domains	
1	A2	Grid-coupling technique	Sliding	Sliding	
		Propeller Representation			
]	B1	Number of considered blades	Complete propeller	Complete propeller	
	~ .	Computational Grid			
(Cl	Туре	Unstructured	Unstructured	
(C2	Local-grid refinement	Possible - used here	Possible - used here	
(C3	Primary volume elements	Tetraheder	Tetraheder	
(C4	Primary surface elements	Triangles	Triangles	
(C5	Wall-boundary layer type	Prism Layer	Prism Layer	
(C7	Number of cells at boundary layer	511110	511110	
(C8	Y^+ -value at r/R=0.4, 0.7, 0.9	50,50,50	6E+08	
(C9	Averaged Y -value	50	600	
(C10	Number of cells on blade surface	86930	86930	
		Norm. Dim. the Physical Domain	•	•	
]	DI	X_upstream/D, X_downstream/D	2,8	2,8	
	D2	Cross area of domain in prop. plain	125.44	125.44	
		Numerical Approximation			
1	E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS	
1	E2	Coordinates	Cartesian	Cartesian	
1	E3	Convection scheme (momentum eq.)	high-order upwind	high-order upwind	
, I	E3 F4	Transient approximation	implicit	implicit	
l	F5	Spatial order of acc. (neglecting BC)	0	0	
l	E6	Temporal order of accuracy	Ő	0	
l	E7	Time step	0 00055568	0 000694448	
1	F8	Fauivalent rot Angle for a time step	3	1 0825	
	20	Equivalent for 7 mgie for a time step	5	1.0025	
		Turbulence treatment			
]	F1	Model name	k-epsilon	k-epsilon	
]	F2	Convection scheme (Turb. Eqn.)	high-order upwind	high-order upwind	
		Boundary conditions			
(G1	Blade	wall function	wall function	
(G2	Hub	wall function	wall function	
(G3	Inlet	Fixed Velocity	Fixed Velocity	
(G4	Outlet	Fixed Pressure	Fixed Pressure	
(G5	Outer domain	Slip flow	Slip flow	

10.0		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
Ι		no / 0	0 / 0
	Please comment		
	Computational Damanda		
T1	Number of processors used	20	20
J1 12	Number of timestens (steady)	20	20
J2 13	Number of timesteps (steady)	1080	0
J.J 14	Wall clock time per revolution	1000 3 65h	2 Qh
J-1	wan-clock time per revolution	5.0511	2.911
	Code		
Κ	References	0 / 0	0 / 0
	Comments		
L	Add. info.	0 / 0	0 / 0

13.5 R10 - Questionaire part II

14 Result R11

14.1 R11 - Open water characteristic

-		CFI), model :	scale		CFD, full s	cale
	J	K_T	$10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$
_	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-	0.600	0.608	1.378	0.421	0.61	6 1.367	0.431
	0.800	0.496	1.208	0.523	0.50	0 1.188	0.536
	1.000	0.394	1.020	0.616	0.39	8 0.996	0.635
	1.200	0.288	0.813	0.678	0.29	0.788	0.708
_	1.400	0.178	0.583	0.681	0.18	3 0.560	0.730

0.020 0.000 -0.020

-0.040

-0.060 -0.080 -0.100

0.60

0.80

1.00

J[-]

1.20

1.40

14.2 R11 - Differences CFD and EFD

	CFD - EFD, model scale	CFD - EFD, full scale
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$
	[-] [-] [-]	[-] [-] [-]
0.60	-0.021 -0.019 -0.009	-0.015 -0.019 -0.004
0.80	-0.014 0.030 -0.028	-0.012 0.021 -0.023
1.00	-0.005 0.045 -0.036	-0.004 0.032 -0.027
1.20	-0.006 0.036 -0.048	-0.005 0.022 -0.032
1.40	-0.010 0.025 -0.068	-0.006 0.011 -0.040

14.3 R11 - Radial distribution tables

model scale

			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.009	0.007	0.005	0.018	0.017	0.016	0.013	0.008
0.400	0.031	0.027	0.022	0.016	0.008	0.065	0.062	0.057	0.047	0.032
0.500	0.048	0.042	0.035	0.026	0.015	0.109	0.104	0.094	0.078	0.055
0.600	0.072	0.062	0.051	0.039	0.025	0.166	0.155	0.138	0.116	0.086
0.700	0.099	0.084	0.069	0.053	0.035	0.231	0.210	0.184	0.153	0.115
0.800	0.129	0.105	0.084	0.063	0.041	0.300	0.262	0.221	0.178	0.132
0.900	0.152	0.117	0.088	0.062	0.038	0.343	0.281	0.224	0.169	0.119
0.975	0.066	0.049	0.035	0.022	0.011	0.145	0.116	0.087	0.059	0.037

full scale										
			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.012	0.010	0.009	0.007	0.006	0.019	0.018	0.016	0.013	0.008
0.400	0.031	0.027	0.023	0.017	0.010	0.064	0.062	0.057	0.047	0.032
0.500	0.050	0.043	0.036	0.027	0.016	0.109	0.103	0.093	0.077	0.055
0.600	0.073	0.063	0.052	0.040	0.025	0.165	0.153	0.136	0.113	0.083
0.700	0.102	0.085	0.070	0.054	0.035	0.234	0.208	0.181	0.149	0.111
0.800	0.130	0.105	0.085	0.064	0.042	0.295	0.256	0.215	0.173	0.127
0.900	0.153	0.117	0.088	0.062	0.038	0.340	0.275	0.216	0.162	0.111
0.975	0.066	0.049	0.034	0.021	0.011	0.142	0.112	0.082	0.055	0.032

			K_T [-]				$10K_Q$	[-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.400	0.000	0.000	0.000	0.001	0.001	-0.001	-0.001	-0.001	0.000	0.000
0.500	0.001	0.001	0.001	0.001	0.001	0.000	-0.001	-0.001	0.000	0.001
0.600	0.002	0.001	0.001	0.001	0.001	-0.001	-0.001	-0.002	-0.003	-0.003
0.700	0.003	0.001	0.001	0.001	0.001	0.002	-0.001	-0.003	-0.003	-0.004
0.800	0.001	0.000	0.000	0.000	0.001	-0.005	-0.006	-0.005	-0.005	-0.005
0.900	0.001	0.000	0.000	0.000	0.000	-0.004	-0.006	-0.007	-0.008	-0.008
0.975	0.000	0.000	0.000	0.000	0.000	-0.003	-0.004	-0.005	-0.005	-0.005

14.5 R11 - Questionaire part I

14	.5	KII - Questionaire part I		len i
	<u> </u>		model scale	full scale
	Solve	er		
		Computational Domain		
	AI	Domain topology	1 rotating domain	1 rotating domain
	A2	Grid-coupling technique	None	None
		Propeller Representation		
	B1	Number of considered blades	1 blade, non-matching	1 blade, matching
		Computational Grid		
	C1	Туре	Unstructured	Unstructured
	C2	Local-grid refinement	Possible - used here	Possible - used here
	C3	Primary volume elements	Hexahedral	Tetraheder
	C4	Primary surface elements	Triangles	Triangles
	C5	Wall-boundary layer type	-	-
	C7	Number of cells at boundary layer	0	0
	C8	Y^+ -value at r/R=0.4, 0.7, 0.9	80, 120, 150	150, 250, 300
	C9	Averaged Y ⁺ -value	115	240
	C10	Number of cells on blade surface	7126	9052
		Norm. Dim. the Physical Domain		
	D1	X_upstream/D, X_downstream/D	6,10	6,10
	D2	Cross area of domain in prop. plain	0.9997	0.9997
		Numerical Approximation		
	E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS
	E2	Coordinates	Cartesian	Cartesian
	E3	Convection scheme (momentum eq.)	high-order upwind	high-order upwind
	E4	Transient approximation	-	-
	E5	Spatial order of acc. (neglecting BC)	2	2
	E6	Temporal order of accuracy	0	0
	E7	Time step	0	0
	E8	Equivalent rot. Angle for a time step	0	0
		Turbulence treatment		
	F1	Model name	k-omega	k-omega
	F2	Convection scheme (Turb. Eqn.)	high-order upwind	high-order upwind
		· • • • •	-	
		Boundary conditions		
	G1	Blade	wall function	wall function
	G2	Hub	wall function	wall function
	G3	Inlet	Fixed Velocity	Fixed Velocity
	G4	Outlet	Fixed Pressure	Fixed Pressure
	G5	Outer domain	-	-

- 110	And Anonimo burry	model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
Ι	DI	no	no
	Please comment		
	Computational Demands		
J1	Number of processors used	32	32
J2	Number of timesteps (steady)	2000	2000
J3	Number of timesteps (transient)	0	0
J4	Wall-clock time per revolution	0	0
	Code		
Κ	References	FLUENT	FLUENT
	Comments		
L	Add. info.	0 / 0	0 / 0

14.5 R11 - Questionaire part II

15 Result R12

15.1 R12 - Open water characteristic

	CFI), model :		CFD, full scale				
J	K_T	$10K_Q$	$\eta_{\rm O}$	K	$_T = 10K_Q$	$\eta_{\rm O}$		
 [-]	[-]	[-]	[-]	[-] [-]	[-]		
0.600	0.618	1.424	0.414	0.62	21 1.397	0.425		
0.800	0.497	1.199	0.528	0.5	03 1.183	0.541		
1.000	0.380	0.983	0.616	0.3	88 0.973	0.634		
1.200	0.269	0.767	0.671	0.2	0.758	0.702		
 1.400	0.157	0.531	0.660	0.1	0.544	0.732		

15.2 R12 - Differences CFD and EFD

	CFD - EFD, mo	del scale	CFD -]	EFD, full scale
	$K_T = 10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q \eta_0$
	[-] [-]	[-]	[-]	[-] [-]
0.60	-0.011 0.028	-0.016	-0.010	0.012 -0.010
0.80	-0.013 0.021	-0.024	-0.009	0.016 -0.017
1.00	-0.019 0.008	-0.036	-0.014	0.008 -0.028
1.20	-0.026 -0.009	-0.055	-0.018	-0.007 -0.038
1.40	-0.031 -0.028	-0.088	-0.011	-0.005 -0.038

15.3 R12 - Radial distribution tables

model scale

			K_T [K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.009	0.008	0.006	0.004	0.001	0.014	0.013	0.011	0.006	0.000
0.400	0.029	0.025	0.020	0.013	0.004	0.059	0.057	0.050	0.038	0.019
0.500	0.046	0.041	0.033	0.024	0.012	0.102	0.098	0.088	0.071	0.048
0.600	0.069	0.061	0.050	0.037	0.022	0.160	0.149	0.131	0.109	0.078
0.700	0.097	0.083	0.067	0.051	0.033	0.228	0.205	0.176	0.146	0.108
0.800	0.126	0.104	0.081	0.061	0.039	0.297	0.256	0.212	0.173	0.128
0.900	0.152	0.116	0.085	0.060	0.037	0.356	0.279	0.216	0.167	0.119
0.975	0.087	0.059	0.035	0.021	0.011	0.201	0.140	0.090	0.060	0.037

full scale										
			K_T [-]				$10K_Q$ [-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.010	0.008	0.007	0.005	0.003	0.015	0.014	0.011	0.007	0.002
0.400	0.030	0.027	0.022	0.016	0.009	0.061	0.058	0.053	0.042	0.028
0.500	0.048	0.042	0.035	0.026	0.016	0.104	0.099	0.089	0.074	0.055
0.600	0.070	0.062	0.051	0.039	0.025	0.159	0.148	0.132	0.109	0.085
0.700	0.097	0.083	0.068	0.052	0.035	0.224	0.201	0.175	0.143	0.117
0.800	0.126	0.105	0.083	0.062	0.041	0.291	0.251	0.210	0.169	0.143
0.900	0.149	0.116	0.087	0.061	0.038	0.339	0.272	0.213	0.161	0.141
0.975	0.092	0.061	0.036	0.021	0.011	0.207	0.140	0.090	0.056	0.051

			K_T [-]				$10K_Q$	[-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.001	0.001	0.002	0.000	0.000	0.000	0.001	0.003
0.400	0.001	0.001	0.002	0.003	0.005	0.002	0.002	0.002	0.004	0.009
0.500	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.007
0.600	0.001	0.001	0.002	0.002	0.003	-0.001	-0.001	0.000	0.000	0.007
0.700	0.000	0.000	0.001	0.001	0.002	-0.004	-0.003	-0.002	-0.002	0.009
0.800	0.001	0.001	0.002	0.001	0.002	-0.006	-0.005	-0.002	-0.004	0.016
0.900	-0.003	0.001	0.002	0.001	0.002	-0.017	-0.007	-0.003	-0.006	0.022
0.975	0.005	0.002	0.001	0.000	0.000	0.006	0.000	0.000	-0.004	0.014

15.5 R12 - Questionaire part I

		model scale	full scale
So	lver		
	Computational Domain		
A1	Domain topology	1 rotating domain	1 rotating domain
A2	Grid-coupling technique	None	None
	Propeller Representation		
B1	Number of considered blades	Complete propeller	Complete propeller
	Computational Grid		
C1	Туре	Structured	Structured
C2	Local-grid refinement	Possible - used here	Possible - used here
C3	Primary volume elements	Hexahedral	Hexahedral
C4	Primary surface elements	Quads	Triangles
C5	Wall-boundary layer type	Hex Layer	Hex Layer
C7	Number of cells at boundary layer	0	0
C8	Y ⁺ -value at r/R=0.4, 0.7, 0.9	0.8, 1.0, 1.3	15,20,27
C9	Averaged Y ⁺ -value	1	40
C1	0 Number of cells on blade surface	42000	115000
	Norm. Dim. the Physical Domain		
D1	X_upstream/D, X_downstream/D	5,10	5,10
D2	Cross area of domain in prop. plain	10	10
	Numerical Approximation		
E1	Finite Approximation Scheme (Fluid	FV-NS	FV-NS
E2	Coordinates	Cartesian	Cartesian
E3	Convection scheme (momentum eq.)	high-order upwind	high-order upwind
E4	Transient approximation	explicit	explicit
E5	Spatial order of acc. (neglecting BC)	0	0
E6	Temporal order of accuracy	0	0
E7	Time step	0.0002 sec	0.00064 sec
E8	Equivalent rot. Angle for a time step	1°	1°
	Turbulence treatment		
F1	Model name	k-omega	k-omega
F2	Convection scheme (Turb. Eqn.)	-	-
	Boundary conditions		
Gl	Blade	resolved	wall function
G2	Hub	wall function	wall function
G3	Inlet	Fixed Velocity	Fixed Velocity
G4	Outlet	Fixed Pressure	Fixed Pressure
G5	Outer domain	Slip flow	Slip flow

		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
Ι		no / 0	0 / 0
	Please comment		
	Computational Demands		
11	Number of processors used	32	32
J2	Number of timesteps (steady)	0	0
J3	Number of timesteps (transient)	1750	1750
J4	Wall-clock time per revolution	3 hours	3 hours
	L.		
	Code		
Κ	References	0 / 0	0 / 0
т	Comments Add info	0 / 0	0 / 0
L	Add. Info.	070	070
			1

15.5 R12 - Questionaire part II

16 Result R14

16.1 R14 - Open water characteristic

_		CFI), model :	scale	CF	D, full sc	ale
	J	K_T	$10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$
	[-]	[-]	[-]	[-]	[-]	[-]	[-]
_	0.600	0.622	1.422	0.417	0.636	1.430	0.424
	0.800	0.496	1.187	0.532	0.511	1.196	0.544
	1.000	0.375	0.961	0.621	0.390	0.970	0.640
	1.200	0.263	0.742	0.677	0.280	0.753	0.709
_	1.400	0.152	0.509	0.665	0.170	0.522	0.726

16.2 R14 - Differences CFD and EFD

	CFD - EFD, model scale	e CFD - EFD, full scale
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$
	[-] [-] [-]	[-] [-] [-]
0.60	-0.007 0.026 -0.013	0.005 0.045 -0.010
0.80	-0.014 0.009 -0.019	-0.001 0.028 -0.015
1.00	-0.024 -0.014 -0.031	-0.011 0.006 -0.022
1.20	-0.032 -0.034 -0.049	-0.017 -0.013 -0.032
1.40	-0.036 -0.050 -0.084	-0.019 -0.026 -0.044

16.3 R14 - Radial distribution tables

model scale

	K_T [-]							-]		
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.006	0.005	0.005	0.004	0.003	0.010	0.009	0.008	0.006	0.003
0.400	0.021	0.018	0.015	0.010	0.005	0.044	0.042	0.038	0.030	0.020
0.500	0.035	0.031	0.026	0.020	0.012	0.077	0.075	0.069	0.058	0.043
0.600	0.057	0.051	0.043	0.033	0.021	0.131	0.125	0.113	0.095	0.071
0.700	0.091	0.079	0.064	0.048	0.030	0.215	0.195	0.169	0.138	0.101
0.800	0.139	0.115	0.089	0.064	0.038	0.325	0.281	0.231	0.179	0.123
0.900	0.181	0.132	0.096	0.063	0.033	0.408	0.308	0.238	0.173	0.112
0.975	0.092	0.064	0.037	0.021	0.009	0.209	0.148	0.093	0.059	0.035

full scale										
			K_T [-]	$10K_{O}$ [-]					
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.006	0.006	0.005	0.005	0.004	0.011	0.010	0.009	0.007	0.004
0.400	0.022	0.020	0.017	0.013	0.009	0.046	0.045	0.042	0.036	0.026
0.500	0.036	0.033	0.028	0.022	0.015	0.078	0.077	0.071	0.061	0.047
0.600	0.058	0.052	0.044	0.035	0.024	0.132	0.126	0.114	0.097	0.074
0.700	0.092	0.080	0.066	0.050	0.033	0.215	0.196	0.170	0.139	0.102
0.800	0.141	0.117	0.091	0.066	0.040	0.325	0.281	0.230	0.179	0.123
0.900	0.183	0.135	0.099	0.066	0.036	0.406	0.308	0.238	0.173	0.111
0.975	0.096	0.067	0.039	0.022	0.010	0.215	0.150	0.093	0.059	0.033

			K_T [-]				$10K_Q$	[-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
0.400	0.001	0.002	0.003	0.003	0.004	0.002	0.003	0.004	0.005	0.006
0.500	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.004
0.600	0.001	0.001	0.002	0.002	0.002	0.000	0.001	0.001	0.002	0.003
0.700	0.001	0.002	0.002	0.002	0.002	0.000	0.000	0.001	0.001	0.002
0.800	0.002	0.002	0.002	0.002	0.002	0.000	-0.001	-0.001	0.000	0.000
0.900	0.002	0.003	0.003	0.003	0.003	-0.002	0.000	0.000	0.000	-0.001
0.975	0.004	0.003	0.002	0.001	0.001	0.006	0.002	0.000	-0.001	-0.001

16.5 R14 - Questionaire part I

		model scale	full scale	
Solve	er			
	Computational Domain			
A1	Domain topology	1 rotating domain	1 rotating domain	
A2	Grid-coupling technique	None	None	
	Propeller Representation			
B 1	Number of considered blades	Complete propeller	Complete propeller	
	Computational Grid			
C1	Туре	Unstructured	Unstructured	
C2	Local-grid refinement	Possible - used here	Possible - used here	
C3	Primary volume elements	Polyhedral	Polyhedral	
C4	Primary surface elements	Triangles	Triangles	
C5	Wall-boundary layer type	Prism Layer	Prism Layer	
C7	Number of cells at boundary layer	21	20	
C8	Y^+ -value at r/R=0.4, 0.7, 0.9	1.212 ; 1.533 ; 1.825	30.9, 39.9, 49.1	
C9	Averaged Y^{+} -value	1.5	41.6	
C10	Number of cells on blade surface	~20663	~20236	
	Norm. Dim. the Physical Domain			
D1	X_upstream/D, X_downstream/D	5, 10	5, 10	
D2	Cross area of domain in prop. plain	100	100	
	Numerical Approximation			
E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS	
E2	Coordinates	Cartesian	Cartesian	
E3	Convection scheme (momentum eq.)	2nd-order centered	2nd-order centered	
E4	Transient approximation	implicit	implicit	
E5	Spatial order of acc. (neglecting BC)	2nd-irdered	2nd-irdered	
E6	Temporal order of accuracy	1st -ordered	1st -ordered	
E7	Time step	0.0006	0.0019	
E8	Equivalent rot. Angle for a time step	3°	3°	
	Turbulence treatment			
F1	Model name	k-omega	k-omega	
F2	Convection scheme (Turb. Eqn.)	2nd-order centered	2nd-order centered	
~ .	Boundary conditions			
Gl	Blade	resolved	resolved	
G2	Hub	wall function	wall function	
G3	Inlet	Fixed Velocity	Fixed Velocity	
G4	Outlet	Fixed Pressure	Fixed Pressure	
G5	Outer domain	-	-	

	r and r	model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
1	Please comment		10
	Computational Demands		
J1	Number of processors used	6	6
J2	Number of timesteps (steady)	0	0
J3	Number of timesteps (transient)	5	5
J4	Wall-clock time per revolution	0	0
	Code		
K	References	0 / 0	0 / 0
	0		
L	Add. info.	0 / 0	0 / 0

16.5 R14 - Questionaire part II

17 Result R15

17.1 R15 - Open water characteristic

•		CFI), model :	scale		CFD, full scale			
	J	K_T	$10K_Q$	$\eta_{\rm O}$		K_T	$10K_Q$	$\eta_{\rm O}$	
	[-]	[-]	[-]	[-]		[-]	[-]	[-]	
-	0.600	0.623	1.396	0.426	0	.628	1.394	0.430	
	0.800	0.504	1.175	0.546	0.	.502	1.163	0.549	
	1.000	0.392	0.969	0.643	0.	.383	0.946	0.644	
	1.200	0.286	0.765	0.714	0.	.274	0.736	0.711	
	1.400	0.181	0.543	0.741	0.	165	0.506	0.728	

17.2 R15 - Differences CFD and EFD

			CFD - EFD, mo	del scale	CFD - EFD, full scale			
			$K_T = 10K_Q$	$\eta_{\rm O}$	$K_T = 10K$	$q \eta_0$		
		0.10	[-] [-]	[-]	[-] [-]	[-]		
		0.60	-0.006 -0.001	-0.004	-0.003 0.00	08 -0.005		
		0.80	-0.006 -0.003	-0.005	-0.010 -0.00	0.009		
		1.00	-0.008 - 0.006	-0.009	-0.018 -0.01	18 -0.018 20 0.020		
		1.20	-0.009 -0.011	-0.012	-0.023 -0.03	-0.029		
		1.10	-0.007 -0.010	-0.007	-0.024 -0.04	-0.042		
	0.100					and EFD		
	0.080 -				- modell scale			
	0.060 •				-	2 ■ ¶o		
Ŀ	0.040							
ΔK_T , $\Delta 10 K_Q$, $\Delta \eta_{ m O}$	0.020							
	0.000							
	-0.020							
	-0.040							
	-0.060 •							
	-0.080 -							
	-0.100							
		0.60	0.80	1.00 J [-]	1.20	1.40		
	0 100 -				Differences CFD	and EFD		
	0.000				full scale, ITTC'78			
	0.080				$K_T = 10K_g$	$_2 \blacksquare \eta_0$		
	0.060							
-] 0	0.040 •							
, Δη,	0.020 •							
$0K_Q$	0.000							
, Δ1	-0.020 •							
ΔK_T	-0.040							
,	-0.060							
	-0.080							
	-0.100	0.60	0.80	1.00 J [-]	1.20	1.40		

17.3 R15 - Radial distribution tables

model scale

	K_T [-]					$10K_Q$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.007	0.005	0.017	0.016	0.014	0.011	0.006
0.400	0.031	0.028	0.023	0.016	0.009	0.062	0.060	0.054	0.043	0.028
0.500	0.049	0.044	0.036	0.027	0.016	0.107	0.102	0.091	0.075	0.053
0.600	0.073	0.064	0.053	0.040	0.026	0.167	0.154	0.136	0.112	0.082
0.700	0.101	0.086	0.070	0.053	0.036	0.234	0.208	0.178	0.146	0.109
0.800	0.130	0.105	0.083	0.062	0.041	0.299	0.252	0.209	0.168	0.124
0.900	0.155	0.116	0.086	0.061	0.038	0.350	0.268	0.208	0.158	0.110
0.975	0.073	0.052	0.034	0.020	0.010	0.160	0.115	0.080	0.053	0.031

full scale											
			K_T [-]		$10K_{O}$ [-]					
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40	
r/R [-]											
0.300	0.012	0.010	0.008	0.006	0.004	0.017	0.016	0.014	0.009	0.003	
0.400	0.032	0.028	0.022	0.015	0.007	0.062	0.059	0.052	0.039	0.022	
0.500	0.049	0.043	0.035	0.025	0.014	0.105	0.099	0.088	0.070	0.046	
0.600	0.072	0.062	0.051	0.038	0.023	0.161	0.148	0.130	0.106	0.075	
0.700	0.099	0.083	0.067	0.051	0.033	0.226	0.200	0.171	0.139	0.102	
0.800	0.128	0.104	0.081	0.060	0.039	0.292	0.247	0.203	0.162	0.119	
0.900	0.157	0.116	0.084	0.059	0.036	0.354	0.268	0.206	0.156	0.109	
0.975	0.080	0.056	0.035	0.020	0.010	0.176	0.126	0.084	0.054	0.032	

	K_T [-]					$10K_Q$ [-]				
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.000	0.000	0.000	-0.001	0.000	0.000	-0.001	-0.001	-0.003
0.400	0.000	0.000	-0.001	-0.001	-0.002	0.000	-0.001	-0.002	-0.003	-0.006
0.500	0.000	-0.001	-0.001	-0.001	-0.002	-0.002	-0.003	-0.003	-0.004	-0.007
0.600	-0.001	-0.002	-0.002	-0.002	-0.002	-0.005	-0.006	-0.006	-0.006	-0.007
0.700	-0.002	-0.002	-0.002	-0.003	-0.003	-0.008	-0.007	-0.007	-0.007	-0.008
0.800	-0.001	-0.001	-0.002	-0.002	-0.002	-0.007	-0.005	-0.005	-0.005	-0.005
0.900	0.002	0.000	-0.002	-0.002	-0.002	0.004	0.000	-0.002	-0.003	-0.001
0.975	0.007	0.004	0.001	0.000	-0.001	0.016	0.011	0.004	0.001	0.001

17.5 R15 - Questionaire part I

17.3	K13 - Questionalie part I	model scale	full scale
Solv	0 P		
5010	Computational Domain	STAK-CCM+	
Δ1	Domain topology	Multiple domains	Multiple domains
A2	Grid coupling technique	Multiple ref. frames	Multiple ref. frames
A2	Grid-coupling teeninque	Wintiple fer. frames	Withtiple fer. frames
	Propeller Representation		
B1	Number of considered blades	Complete propeller	Complete propeller
~	Computational Grid	** 1	
CI	Туре	Unstructured	Unstructured
C2	Local-grid refinement	Possible - used here	Possible - used here
C3	Primary volume elements	Polyhedral	Polyhedral
C4	Primary surface elements	Triangles	Triangles
C5	Wall-boundary layer type	Prism Layer	Prism Layer
C7	Number of cells at boundary layer	5	5
C8	Y^+ -value at r/R=0.4, 0.7, 0.9	1.38, 1.65, 1.97	450, 543, 707
C9	Averaged Y^+ -value	1.7	570.8
C10	Number of cells on blade surface	4E+06	3E+06
	Name Dias dia Diasia Damain		_
D1	Norm. Dim. the Physical Domain	1.20	1.26
DI	X_upstream/D, X_downstream/D	4,20	4,20
D2	Cross area of domain in prop. plain	10	10
	Numerical Approximation		
E1	Finite Approximation Scheme (Fluid	FV-NS	FV-NS
E2	Coordinates	Cartesian	Cartesian
E3	Convection scheme (momentum eq.)	high-order upwind	high-order upwind
E4	Transient approximation	-	-
E5	Spatial order of acc. (neglecting BC)	0	0
E6	Temporal order of accuracy	0	0
E7	Time step	0	0
E8	Equivalent rot. Angle for a time step	0	0
	Turbulence treatment		
F1	Model name	k-omega	RS-transport
F2	Convection scheme (Turb. Eqn.)	high-order upwind	high-order upwind
	Boundary conditions		+
G1	Blade	resolved	wall function
C2	Hub	resolved	wall function
02 C2	Indu	Fixed Valacity	Fixed Velocity
		Fixed Pressure	Fixed Process
G4	Outlet	Fixed Pressure	Fixed Pressure
<u> </u>	Outer domain	Slip flow	Slip flow

17.0		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	pressure correction	pressure correction
	Transition		
Ι	Please comment	yes / Re_theta - gamma_Model in K-W SST model	0 / 0
	Comments the set Downers by		
T 1	Computational Demands		
JI	Number of processors used	64	64
J2	Number of timesteps (steady)	2000	2000
J3	Number of timesteps (transient)	0	0
J 4	Wall-clock time per revolution	0	0
	Code		
K	References	STAR CCM+ Ver. 9.06	STAR CCM+ Ver. 9.06
	Comments		
L	Add. info.	0 / 0	0 / 0
			1

17.5 R15 - Questionaire part II

18 Result R16

18.1 R16 - Open water characteristic

	CFI), model :	scale	CFD, full scale			
J	K_T	$10K_Q$	$\eta_{\rm O}$	K_T	$10K_Q$	$\eta_{\rm O}$	
 [-]	[-]	[-]	[-]	[-]	[-]	[-]	
0.600	0.622	1.434	0.414	0.638	1.439	0.424	
0.800	0.494	1.192	0.528	0.513	1.202	0.543	
1.000	0.371	0.961	0.614	0.392	0.975	0.640	
1.200	0.257	0.740	0.663	0.280	0.756	0.707	
 1.400	0.144	0.504	0.638	0.170	0.526	0.722	

18.2 R16 - Differences CFD and EFD

	CFD - EFD, model scale	CFD - EFD, full scale			
	$K_T = 10K_Q = \eta_O$	$K_T = 10K_Q = \eta_O$			
	[-] [-] [-]	[-] [-] [-]			
0.60	-0.007 0.038 -0.016	0.007 0.053 -0.011			
0.80	-0.016 0.014 -0.024	0.001 0.035 -0.015			
1.00	-0.029 -0.014 -0.038	-0.009 0.010 -0.022			
1.20	-0.038 -0.036 -0.063	-0.017 -0.010 -0.034			
1.40	-0.043 -0.055 -0.110	-0.019 -0.023 -0.049			

J [-]

18.3 R16 - Radial distribution tables

model scale

		K_T [-]					$10K_Q$ [-]			
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.010	0.009	0.007	0.005	0.002	0.016	0.014	0.012	0.007	0.000
0.400	0.028	0.024	0.018	0.012	0.003	0.057	0.053	0.046	0.034	0.016
0.500	0.046	0.040	0.032	0.022	0.010	0.101	0.095	0.084	0.067	0.042
0.600	0.070	0.061	0.049	0.036	0.020	0.161	0.148	0.130	0.105	0.073
0.700	0.097	0.083	0.066	0.049	0.030	0.230	0.205	0.175	0.141	0.102
0.800	0.128	0.104	0.080	0.058	0.036	0.303	0.258	0.211	0.167	0.121
0.900	0.157	0.113	0.083	0.056	0.033	0.368	0.273	0.213	0.160	0.113
0.975	0.085	0.060	0.035	0.019	0.009	0.200	0.145	0.091	0.058	0.036

full scale										
	K_T [-]				$10K_Q$ [-]					
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.011	0.010	0.008	0.006	0.004	0.017	0.015	0.013	0.009	0.004
0.400	0.031	0.027	0.022	0.015	0.008	0.061	0.058	0.052	0.041	0.025
0.500	0.049	0.043	0.035	0.026	0.014	0.105	0.100	0.089	0.073	0.050
0.600	0.072	0.063	0.052	0.039	0.024	0.162	0.150	0.132	0.108	0.077
0.700	0.099	0.085	0.068	0.052	0.033	0.230	0.205	0.175	0.142	0.104
0.800	0.130	0.107	0.083	0.061	0.040	0.303	0.257	0.210	0.167	0.122
0.900	0.160	0.117	0.086	0.060	0.037	0.368	0.274	0.212	0.159	0.111
0.975	0.086	0.062	0.038	0.021	0.010	0.194	0.143	0.092	0.057	0.033

			K_T [-]				10K _Q	[-]	
J [-]	0.60	0.80	1.00	1.20	1.40	0.60	0.80	1.00	1.20	1.40
r/R [-]										
0.300	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.004
0.400	0.002	0.003	0.003	0.004	0.005	0.004	0.005	0.006	0.007	0.010
0.500	0.002	0.003	0.003	0.003	0.004	0.004	0.005	0.005	0.006	0.007
0.600	0.002	0.002	0.002	0.003	0.003	0.001	0.002	0.002	0.003	0.004
0.700	0.002	0.002	0.002	0.003	0.003	0.000	0.000	0.000	0.001	0.002
0.800	0.002	0.002	0.003	0.003	0.003	0.000	-0.001	-0.001	0.000	0.000
0.900	0.003	0.004	0.004	0.004	0.003	0.000	0.001	0.000	-0.001	-0.002
0.975	0.001	0.002	0.003	0.002	0.001	-0.005	-0.002	0.000	-0.002	-0.003

18.5 R16 - Questionaire part I

10		R10 - Questionarie part i	model scale	full scale
	Solve	r	STAR-CCM+	STAR-CCM+
		Computational Domain		
	A1	Domain topology	1 rotating domain	1 rotating domain
	A2	Grid-coupling technique	Multiple ref. frames	Multiple ref. frames
		Propeller Representation		
	B1	Number of considered blades	Complete propeller	Complete propeller
		Computational Grid		
	C1	Туре	Unstructured	Unstructured
	C2	Local-grid refinement	Possible - used here	Possible - used here
	C3	Primary volume elements	Polyhedral	Polyhedral
	C4	Primary surface elements	Mixed	Mixed
	C5	Wall-boundary layer type	Prism Layer	Prism Layer
	C7	Number of cells at boundary layer	10	25
	C8	Y ⁺ -value at r/R=0.4, 0.7, 0.9	22.5, 30, 40	22, 30, 41
	C9	Averaged Y ⁺ -value	30	31
	C10	Number of cells on blade surface	75677 (total)	75695 (total)
		Norm. Dim. the Physical Domain		
	D1	X_upstream/D, X_downstream/D	5D, 13D	5D, 13D
	D2	Cross area of domain in prop. plain	100	100
		Numerical Approximation		
	E1	Finite Approximation Scheme (Fluid)	FV-NS	FV-NS
	E2	Coordinates	Cartesian	Cartesian
	E3	Convection scheme (momentum eq.)	2nd-order centered	2nd-order centered
	E4	Transient approximation	implicit	implicit
	E5	Spatial order of acc. (neglecting BC)	2nd	2nd
	E6	Temporal order of accuracy	nothing (steady)	nothing (steady)
	E7	Time step	nothing (steady)	nothing (steady)
	E8	Equivalent rot. Angle for a time step	nothing (steady)	nothing (steady)
	-	Turbulence treatment		
	FI	Model name	k-omega	k-omega
	F2	Convection scheme (Turb. Eqn.)	2nd-order centered	2nd-order centered
		Doundowy conditions		
	C^{1}	Doundary conditions	wall function	wall function
	C2		wall function	wall function
	\mathbf{G}^2	nuu Inlat	Wall function	wall function
	C_{1}	nnet Outlet	Fixed Velocity	Fixed velocity
	G4	Outlet		
	GO	Outer domain	Subtion	Sub now

10.0		model scale	full scale
	Computational Model		
H1	Fluid	incompressible	incompressible
H2	Pressure	Equation of state	Equation of state
	Transition		
Ι	Diagon comment	NO	NO
	Please comment		
	Computational Demands		
T1	Number of processors used	48	48
12	Number of timesteps (steady)	2500	2500
J2 I3	Number of timesteps (steady)	0	0
J.J 1/1	Wall-clock time per revolution	0	0
J4	wan-clock time per revolution	0	0
	Code		
Κ	References	STAR CCM+ 10.06.009	STAR CCM+ 10.06.010
Ţ	Comments		
L	Add. info.	0 / 0	0 / 0

18.5 R16 - Questionaire part II

19 Remarks

Altogether 14 different groups participated in the ITTC benchmark for the conventional propeller. From the 14 results 13 questionnaires could be evaluated.

Computational approach:

- Four participants used STAR-CCM+, two ANSYS FLUENT and one ANSYS CFX as solver. The majority of the participants did not mention which solver was used for the benchmark calculations.
- Ten participants used an unstructured numerical mesh, while two participants employed a block-structured mesh on basis of hexahedral elements. For one participant the mesh type was not mentioned. In case of five participants the unstructured meshes were generated on basis of tetrahedral elements, while four employed polyhedral cells. One participant generated a hex-dominant mesh with mostly triangular cells on the blade surface.
- Eight participants simulated the whole propeller; while four participants calculated one blade passage. For one participant the data was not provided.
- Large differences can be found regarding the ratio between the cross sectional area of the computational domain in the propeller plane to the propeller disc area, ranging from approximately 4 to 3600.
- For model scale all participants used a 2-equation turbulence model. In full-scale also a Reynolds-Stress model was employed.. Most participants used the k-ω turbulence model, while the k-ε model was used only by two participants.
- In model scale three of the participants calculated with, while the other nine without transition model. One participant didn't provide the information. The number of calculations with transition model is too small to make any comments about the benefits of employing a transition model.
- In seven model scale calculations the boundary flow was resolved down to the wall with the mean dimensionless wall distances on the propeller blades being smaller than $y^+ < 1.7$. In the other calculations wall-functions were employed.
- In full-scale the boundary layer flow was resolved down to the wall in case of 4 simulations, while the other computations were conducted with wall-functions.

Open water characteristics:

- In general the thrust and torque coefficients in model scale were computed to a lower level than the corresponding measurements. The differences in thrust coefficient between computation and measurements are relatively higher compared to the torque coefficient. This has a big impact on the open water efficiency.
- In full-scale the computed thrust coefficients match quiet good with the extrapolated full scale values according to the ITTC78 method. Only for higher advance coefficients a difference between computed and measured thrust data can be found.
- The calculated torque coefficients in full-scale are in general larger than the corresponding extrapolated full-scale data, except for higher advance coefficients where the differences are small.
- In general the computed full-scale results show a better coincidence with extrapolated data from model tests than the comparison between the model scale data itself.
- The highest thrust is generated on the radial section between 0.85 < r/R < 0.95.
- In many CFD computations a distinct Reynolds-number effect can also be found for the propeller thrust, while according to the ITTC78 extrapolation method the influence on the thrust coefficient is rather small.
- In the computations the Reynolds-number effect seems to be also a function of the advance coefficient.

On basis of the collected data the Reynolds-number effects can be evaluated and analyzed in more detail, also with respect to the radial thrust and torque distribution on the propeller blade.

20 References

- Barkmann, U.
 Potsdam Propeller Test Case (PPTC) –
 Open Water Tests with the Model Propeller VP1304
 Report 3752, Schiffbau-Versuchsanstalt Potsdam, April 2011
- Klose, R.
 Kavitationsbeobachtungen und Druckschwankungsmessungen mit konventionellen Propellern und Tip Rake Propellern im Vergleich Report 4482, Schiffbau-Versuchsanstalt Potsdam, 2016 (unpublished)
- [3] ITTC Recommended Procedures and Guidelines 7.5-02-03-02.1 Open Water Test, 2008
- [4] ITTC Recommended Procedures and Guidelines 7.5-02-03-01.5 1978 ITTC Performance Prediction Method, 2014
- [5] Grabert, R., et al.
 ITTC Propeller Benchmark Tip Rake Propeller P1727
 Report 4487, Schiffbau-Versuchsanstalt Potsdam, 2017

21 Formulas

Generell:

Thrust coefficient:	$K_T = \frac{T}{\rho \cdot n^2 D^4}$
Torque coefficient:	$10K_Q = \frac{Q}{\rho \cdot n^2 D^5}$
Open water efficiency:	$\eta_O = \frac{J}{2 \cdot \pi} \cdot \frac{10 \cdot K_T}{10 K_Q}$

Overview:

Avarage over *J* CFD - EFD:

$$\begin{split} & * \quad \Delta K_{T} = \frac{1}{5} \cdot \sum_{i=1}^{5} K_{T_{CFD}}(J_{i}) - \frac{1}{5} \cdot \sum_{i=1}^{5} K_{T_{EFD}}(J_{i}) \\ & * \quad \frac{\Delta K_{T}}{K_{T_{EFD}}} = \left(\frac{1}{5} \cdot \sum_{i=1}^{5} K_{T_{CFD}}(J_{i}) - \frac{1}{5} \cdot \sum_{i=1}^{5} K_{T_{EFD}}(J_{i})\right) / \frac{1}{5} \cdot \sum_{i=1}^{5} K_{T_{EFD}}(J_{i}) \\ & * \quad \Delta 10K_{Q} = \frac{1}{5} \cdot \sum_{i=1}^{5} 10K_{Q_{CFD}}(J_{i}) - \frac{1}{5} \cdot \sum_{i=1}^{5} 10K_{Q_{EFD}}(J_{i}) \\ & * \quad \frac{\Delta 10K_{Q}}{10K_{Q_{EFD}}} = \left(\frac{1}{5} \cdot \sum_{i=1}^{5} 10K_{Q_{CFD}}(J_{i}) - \frac{1}{5} \cdot \sum_{i=1}^{5} 10K_{Q_{EFD}}(J_{i})\right) / \frac{1}{5} \cdot \sum_{i=1}^{5} 10K_{Q_{EFD}}(J_{i}) \\ & * \quad \Delta \eta_{0} = \frac{1}{5} \cdot \sum_{i=1}^{5} \eta_{0_{CFD}}(J_{i}) - \frac{1}{5} \cdot \sum_{i=1}^{5} \eta_{0_{EFD}}(J_{i}) \\ & * \quad \frac{\Delta \eta_{0}}{\eta_{0_{EFD}}} = \left(\frac{1}{5} \cdot \sum_{i=1}^{5} \eta_{0_{CFD}}(J_{i}) - \frac{1}{5} \cdot \sum_{i=1}^{5} \eta_{0_{EFD}}(J_{i})\right) / \frac{1}{5} \cdot \sum_{i=1}^{5} \eta_{0_{EFD}}(J_{i}) \end{split}$$

Result pages:

Differences result pages RXX.2:

$$\Delta K_T = K_{T_{CFD}} - K_{T_{EFD}}$$
$$\Delta 10K_Q = 10K_{Q_{CFD}} - 10K_{Q_{EFD}}$$
$$\Delta \eta_0 = \eta_{0_{CFD}} - \eta_{0_{EFD}}$$

Differences result pages RXX.3:

$$\Delta K_T = K_{T_{full \, scale}} - K_{T_{model \, scale}}$$

$$\Delta 10K_Q = 10K_{Q_{full\,scale}} - 10K_{Q_{model\,scale}}$$

Statistic box plot:

