Propulsion

Twin- und Gegenlaufpropeller

TwinProps_GegenlaufProp_im_Versuch

FORTJES in the stern of a pleasure boat

Twinpropeller

Twinpropeller arbeiten mit einem Zug- und einem Druckpropeller mit gleichem Drehsinn. Der Entwurf des hinteren Propellers stellt erhöhte Anforderungen an die Berechnungsverfahren. Die Twinpropeller müssen so zueinander angeordnet werden, dass die Wirbelschleppe des vorderen Zugpropellers zwischen den Flügeln des hinteren Druckpropellers durchläuft. Durch die Kontraktion des Propellerstrahls des Zugpropellers gelangt zusätzlich seitliches Wasser zum Druckpropeller.

Werden Twinpropeller am Thruster (Schottel Twin Propeller (STP)) oder Podded Drive (Siemens Schottel Propulsor (SSP)) eingesetzt, muss das Gehäuse hydrodynamisch optimiert und mit Leitfinnen versehen werden. Der Drall im Propellerstrom des Zugpropellers wird auf diese Weise teilweise zurückgewonnen und die Zuströmung zum Druckpropeller gezielt beeinflusst.

Das Propellerberechnungsverfahren VORTEX der SVA wurde für den Entwurf und die Optimierung von Twinpropellern angepasst [1]. Die folgenden Bilder zeigen beispielhaft das hydrodynamische Modell und die berechnete Zuströmung zum Druckpropeller.

Gegenlaufpropeller (Contra-Rotating-Propeller)

Gegenlaufpropeller bestehen aus zwei gegenläufig drehenden Propellern. Durch den Gegenlaufpropeller können die Rotationsverluste vermieden werden, weil der hintere Propeller die Rotationsenergie der Strömung nutzen kann, die durch den vorderen Propeller induziert wird. Zusätzlich wird Belastung auf zwei Propeller verteilt.

Die SVA verfügt sowohl in der Schlepprinne wie im Kavitationstunnel über Messsysteme zur Untersuchung von Gegenlaufpropellersystemen. In den letzten Jahren wurden systematische Untersuchungen zum Einfluss des Abstandes der Gegenlaufpropeller und der Anordnung von Gondeln zwischen den Gegenlaufpropellern auf den Wirkungsgrad durchgeführt.

Im Auftrag von REINTJES wurde das Pod-Antriebssystems Fortjes® entwickelt [5], [6]. Das Antriebssystem findet seinen Einsatz speziell bei bis zu 40 m langen Gleiter- und Halbgleiteryachten im Leistungsbereich bis 3000 kW. Für den Entwurf der Gegenlaufpropeller wurde und wird das Verfahren VORTEX der SVA genutzt. Gondel und Schaft wurden völlig neuartig konzipiert, um die Vorteile des Gegenlaufpropellers auch am Pod optimal nutzen zu können.

 

TwinProps_GegenlaufPropTwinProps_HydrodynModell_CFD_mRandTwinProps_Zuströmung_CFD_mRand
TwinProps_SchottelTwinProp_mRandTwinProps_SSP_im_Versuch

 

Themenbezogene Referenzen/Forschungsprojekte

[1] Schulze, R.; Bertolo, G.; Brighenti, A.; Kaul, S.: LUITO Development and Optimisation of the Propulsion System; Study, Design and Tests, PRADS, The Hague, September 20 – 25, 1998
[2] Kaul, S.; Heinke, H.-J.; Abdel Maksoud, M.: Hydrodynamische Optimierung von Podded Drives und aktuelle Anwendungen in der Großausführung (Anwendungsbeispiele SSP), 54. Sitzung des FA „Schiffshydrodynamik“ der STG, Hamburg, 13.09.2000
[3] Edel, K.-O.: Zum Entwurf gegenläufiger Propeller nach der Theorie von Lerbs (77. Mitteilung der SVA), Schiffbauforschung 10 (1971) 5/6
[4] Schmidt, D.: Propulsionsuntersuchungen mit Einzelpropeller und Gegenlaufpropeller am Modell eines Containerschiffes, Schiffbauforschung 14 1/2/1975
[5] Schulze, R.; Weber, A.: Application of the new FORTJES® Z-drive from REINTJES on planing vessels, 11th Intern. Conference on Fast Sea Transportation, FAST 2011, Honolulu, Hawaii, USA, Sept. 2011
[6] Schulze, R.; Weber, A.: The new FORTJES® Z-drive from REINTJES with contra rotating propellers for high speed applications, 11th Intern. Conference on Fast Sea Transportation, FAST 2011, Honolulu, Hawaii, USA, Sept. 2011

Entwurf von Propellern und Propulsionssystemen

Propeller_Solea

Propentwurf_Prop_m_asym_Ruder

Die SVA verfügt über eine langjährige und vielfältige Erfahrung auf dem Gebiet des Propellerentwurfes und dem Design von komplexen Propulsionssystemen. Als Versuchsanstalt und Forschungseinrichtung verfügt die SVA Potsdam über den einzigartigen Vorteil, Erfahrungen aus der Grundlagen- und Anwendungsforschung direkt für den Entwurf von Antriebssystemen nutzbar machen zu können.

Wesentliche Teile der Entwurfsprogramme wurden in der SVA entwickelt. Dies umfasst Präprozessoren zur Propellerdefinition und zur Geometriebearbeitung sowie Nachrechenverfahren für Propeller, ummantelte Propeller, Twin- und Gegenlaufpropeller. Weiterhin sind mathematisch basierte Optimierungsverfahren und Postprozessoren zur Einschätzung der Kavitationseigenschaften, Druckschwankungsprognosen und Festigkeitsrechnungen mittels FEM-Analysen sowie Schnittstellen für die 3D-Modellierung enthalten. All diese Programme bilden das Programmpaket VORTEX. Andere Propellerhersteller und Klassifikationsgesellschaften nutzen unter anderem diese Software für den Entwurf und die Zertifizierung. Durch den engen Kontakt mit diesen Propellerherstellern und Klassifikationsgesellschaften wird die permanente Weiterentwicklung dieser Entwurfswerkzeuge unterstützt.

Die SVA hatte unter anderem wesentlichen Anteil an der Entwicklung des Twinpropellerkonzeptes von SCHOTTEL und setzte Meilensteine bei der Entwicklung von geräuscharmen Propellern für Forschungs- und Marineschiffe und U-Boote. Für große Schlepper wurden Düsenpropeller mit über 200 t Schubkraft entworfen. Insbesondere bei der Entwicklung von Düsenpropellern mit hohen Standschubforderungen konnte auf die breiten Erfahrungen mit umfangreichen CFD-Berechnungen von Propulsionssystemen am Schiff zurückgegriffen werden.

Entwürfe von Propellern und Propulsionssystemen können in der SVA im Modellmaßstab umfassend getestet werden, worauf trotz fortgeschrittener Berechnungsmethoden i. A. noch nicht verzichtet werden kann. Nach Propulsions- bzw. Kavitationsversuchen kann der Propellerentwurf verbessert werden, um den höchsten Ansprüchen der Praxis gerecht zu werden.

Zur Bestimmung des Verhaltens von Schiff und Antriebssystem sowie die Abstimmung zum Fahrmotor werden durch die SVA Probefahrten begleitet und spezielle Bordmessungen (Leistungsmessungen, Vibrations-, Druckschwankungs- und Akustikmessungen, Kavitationsbeobachtungen, Manövriermessungen) durchgeführt.

 

Themenbezogene Referenzen/Forschungsprojekte

[1] Schulze, R.: Globale Optimierung von Propellern, STG-Sprechtag, Flensburg 14. März 1997
[2] Schulze, R.; Bertolo, G.; Brighenti, A.; Kaul, S.: LUITO Development and Optimisation of the Propulsion System; Study, Design and Tests
PRADS, The Hague, September 20 – 25, 1998, 1998 Elsevier Science B.V.
[3] Schulze, R.: Globale Optimierung von Propellern und Propulsionssystemen, Schiff & Hafen 3/2005
[4] Mertes, P., Heinke, H.-J.: Aspects of the Design Procedure for Propellers Providing Maximum Bollard Pull, ITS 2008, Singapore, May 2008
[5] Steinwand, M.; Grabert, R.; Schulze, R.: Ruderentwurf – Aktuelle Entwicklungen, 102. STG Jahreshauptversammlung, Berlin, 23. Nov. 2007
[6] Schulze, R.; Richter, H.: Redundante Antriebe für Einschraubenschiffe, 102. STG Jahreshauptversammlung, Berlin, 23. Nov. 2007
[7] Schulze, R., Weber, A.: Application of the new FORTJES&rmark; Z-drive from REINTJES on planning vessels; 11th Intern. Conference on Fast Sea Transportation, FAST 2011, Honolulu, Hawaii, USA, Sept. 2011
[8] Schulze, R., Weber, A.: The new FORTJES&rmark; Z-drive from REINTJES with cotra rotating propellers for high speed applications, 11th Intern. Conference on Fast Sea Transportation, FAST 2011, Honolulu, Hawaii, USA, Sept. 2011
[9] Heinke, H.-J., Lübke, L. O.: Maßnahmen zur Energieeinsparung, Schiff & Hafen 10/2014