Propeller geometry

The propeller has the following main particulars:

Propeller diameter	$D_{ m P}$	[mm]	250.0000
Pitch at r/R=0.7	P _{0.7}	[mm]	408.7500
Pitch at r/R=0.75	P0.75	[mm]	407.3804
Mean pitch	Pmean	[mm]	391.8812
Chord length at r/R=0.70	C0.70	[mm]	104.1670
Chord length at r/R=0.75	C0.75	[mm]	106.3476
Thickness at r/R=0.75	<i>t</i> 0.75	[mm]	3.7916
Pitch ratio	P0.7/D	[-]	1.6350
Mean pitch ratio	$P_{ m mean}/{ m D}$	[-]	1.5675
Area ratio	AE $/A$ 0	[-]	0.7790
Skew	$ heta_{ m eff}$	[°]	18.8000
Hub diameter ratio	d h $/D_{ m P}$	[-]	0.1500
Number of blades	Z	[-]	5
Direction of rotation			right-handed

- The propeller is designed for academic purposes, with the intention to generate a stable tip vortex.
- The propeller is a controllable pitch propeller.

Hub cap

The hub cap geometry is provided. Please refer to the geometry file. The propeller is investigated in a pull configuration. The hub cap is accordingly.