

Second International Symposium on Marine Propulsors 2011

Workshop: Propeller Performance

Potsdam Propeller Test Case (PPTC)

Cavitation Tests with the Model Propeller VP1304

Case 2.3

Potsdam, May 2011

Case 2.3

Cavitation Test

Test Description

Content

Description		Page
1	Introduction	4
2	Model propeller VP1304	4
3	Cavitation tests	4
4	Requested computations	5
5	Reference	6
6	Evaluation	8
6.1	Case2.3.1, Cavity surface	9
6.2	Case2.3.2, Cavity surface	23
6.3	Cavity surface, Case 2.3.3	38
6.4	Comparison of thrust coefficient	51
Pressu	re distribution, case 2.3.1	53
Pressure distribution, case 2.3.2.		
Pressure distribution, case 2.3.3		

Tables

Table 1: Main data of model propeller VP1304	. 4
Table 2: Working points for the cavitation tests	. 5
Table 3: Thrust coefficients of cavitating propeller	51
Table 4: Difference between computed and measured thrust of cavitating propeller	51

1 Introduction

In the intention to offer research groups the possibility to test and validate their numerical tools the SVA Potsdam GmbH (SVA) investigated the controllable pitch propeller VP1304. The test results are published in course of the propeller workshop of the Second International Symposium on Marine Propulsors 2011 (smp'11). The geometry and results of the propeller are presented by the name PPTC, an acronym for "Potsdam Propeller Test Case".

In the following the cavitation tests with the propeller VP1304 are presented. Also the comparison between the measured data with the corresponding computational results is carried out.

A more detailed description of the cavitation tests conducted in the cavitation tunnel of the SVA is presented in the SVA report 3753 [1], which can be found on the website www.sva-potsdam.de.

2 Model propeller VP1304

The propeller is a controllable pitch propeller. This affects the propeller blade design near the hub and results in a 0.3 mm gap between hub and propeller blade near the leading and trailing edge of the propeller. In Table 1 the main data of the propeller is given.

			VP1304
Diameter	D	[m]	0.250
Pitch ratio $r/R = 0.7$	$P_{0.7}/D$	[—]	1.635
Area ratio	$A_{\rm E}/A_0$	[–]	0.77896
Chord length $r/R = 0.7$	<i>C</i> _{0.7}	[m]	0.10417
Skew	$ heta_{\mathrm{EXT}}$	[°]	18.837
Hub ratio	$d_{ m h}/D$	[–]	0.300
Number of blades	Ζ	[—]	5
Sense of rotation		[—]	right
Туре		[—]	controllable pitch propeller

Table 1: Main data of model propeller VP1304

3 Cavitation tests

The cavitation tests were conducted in the cavitation tunnel K 15 A (Kempf & Remmers) of the SVA Potsdam. For the tests a test section with the length of 2600 mm and a cross section of 600 x 600 mm was used. The dynamometer J25 from Kempf & Remmers was arranged in front of the propeller model. The shaft inclination was zero degrees.

The propeller characteristic in the cavitation tunnel had been measured at the numbers of revolutions n = 15, 20 and 25 s⁻¹. Cavitation buckets were measured with the number of revolutions n = 25 s⁻¹. Two blades had been selected for the cavitation tests.

The cavitation behaviour of the propeller was observed in three working points, corresponding to the test conditions required for test case 2.3.1-2.3.3.

4 **Requested computations**

It was requested to calculate the propeller cavitation for three working point, given in Table 2.

			Case 2.3.1	Case 2.3.2	Case 2.3.3
Advanced coefficient	J	[-]	1.019	1.269	1.408
Cavitation number based on <i>n</i>	σ_n	[-]	2.024	1.424	2.000
Thrust coefficient (non-cavitating!)	K_T	[-]	0.387	0.245	0.167
Number of revolutions	п	[1/s]	24.987	24.986	25.014
Water density (for $t_w = 23.2^{\circ}$ C)	ρ	$[kg/m^3]$	997.44	997.44	997.37
Kinematic viscosity water (for $t_w = 23.2^{\circ}$ C)	V	$[m^2/s]$	9.337·10 ⁻⁷	9.337·10 ⁻⁷	9.272·10 ⁻⁷
Vapour pressure (for $t_w = 23.2^{\circ}$ C)	p_v	[Pa]	2818	2818	2869
Air content	α/α_s	[%]	53.5	53.5	58.50

Table 2: Working points for the cavitation tests

The calculation shall be conducted according to the thrust identity.

For the three working points it was requested to visualize the cavity surface for vapor fractions of 20, 50 and 80%. For case 2.3.1 and case 2.3.2 it was requested to look upon the suction side, while for case 2.3.3 on the pressure side of the propeller.

In order to quantify the thrust deduction it was additionally requested to provide the thrust coefficient of the propeller in cavitating condition.

It was also requested to provide the pressure distribution, made dimensionless with the section advance speed, on the propeller radii r/R = 0.7, 0.97 and 1.00 with and without cavitation.

The data is made dimensionless as follows:

 $J = \frac{V}{n \cdot D}$

Thrust coefficient:

 $K_T = \frac{T}{\rho \cdot n^2 \cdot D^4}$

 $K_Q = \frac{Q}{0 \cdot n^2 \cdot D^5}$

Torque coefficient:

Cavitation number with respect to n

$$\sigma_n = \frac{\left(p - p_v\right)}{0.5 \cdot \rho \cdot \left(nD\right)^2}$$

Pressure coefficient:

$$c_P = \frac{(p - p_0)}{0.5 \cdot \rho \cdot \left(V^2 + (2 \cdot \pi \cdot n \cdot r)^2\right)}$$

with D_P being the propeller diameter, T the propeller thrust, Q the propeller torque, p the tunnel pressure, p_v the vapour pressure, p_0 the static pressure and r the radius.

5 Reference

Heinke, H.-J.
 Potsdam Propeller Test Case (PPTC), Cavitation Tests with the Model Propeller VP1304,
 Report 3753, Schiffbau-Versuchsanstalt Potsdam, April 2011

Case 2.3

Cavitation Test

Evaluation

6 Evaluation

Calculations from 11 different groups were obtained for the evaluation of the cavitating propeller, employing 12 different solvers and submitting 15 calculations. Among these are submissions of different cavitation models and settings. In the following all participants of the case 2.3 and the used solvers are listed:

Group	Solver	Acronym	
Berg-Propulsion	Procal	Berg-Procal	
Cradle	SC/Tetra	Cradle-SC/Tetra	
CSSRC	ANSYS Fluent	CSSRC-Fluent	
HSVA	QCM	HSVA-QCM	
	PPB	HSVA-PPB	
INSEAN	PFC	INSEAN-PFC	
SSPA	ANSYS Fluent	SSPA-Fluent	
TUHH	FreSCO+	TUHH-FreSCO	
University of Genua	Panel	UniGenua-Panel	
	StarCCM+	UniGenua-StarCCM	
University of Triest	ANSYS CFX(FCM)	UniTriest-CFX(FCM)	
	ANSYS CFX(Kunz)	UniTriest-CFX(Kunz)	
	ANSYS CFX(Zwart)	UniTriest-CFX(Zwart)	
VOITH	Comet	VOITH-Comet	
VTT	FinFlo	VTT-FinFlo	

At first the cavity surface for different vapour fractions are evaluated, followed by a summary of the computed thrust coefficient for the cavitating propeller. At the end the pressure distribution on different radii are given for the cavitating and non-cavitating propeller.

6.1 Case2.3.1, Cavity surface

Berg-Procal

Vapour volume fraction 50%

Cradel-SC/Tetra

CSSRC-Fluent

HSVA-QCM

INSEAN-PFC

SSPA-Fluent

Vapour volume fraction 80%

TUHH-FreSCO+

UniGenua-Panel

UniGenua-StarCCM+

UniTriest-CFX(FCM)

UniTriest-CFX(Kunz)

UniTriest-CFX(Zwart)

VOITH-Comet

Vapour volume fraction 80%

VTT-FinFlo

6.2 Case2.3.2, Cavity surface

Berg-Procal

Vapour volume fraction 50%

Cradle-SC/Tetra

CSSRC-Fluent

1411= 0.0 PH1= 18.0 PH1= 36.0 PH1= 54.0 PH1= 72.0

(for all angular positions)

INSEAN-PFC

Blade surface region $p \le p_v$

SSPA-Fluent

Vapour volume fraction 80%

TUHH-FreSCO+(small coeff.)

TUHH-FreSCO+(large coeff.)

Vapour volume fraction

UniGenua-StarCCM+

UniTriest-CFX(FCM)

UniTriest-CFX(Kunz)

UniTriest-CFX(Zwart)

Vapour volume fraction 80%
VTT-FinFlo 0.95 Case 2.3.2 0.9 J= 1.269 2.3 = 1.424 σ_n 0.8 ma $K_{T,no cav.}$ = 0.245 0.7 0.5 Suction side VTT-FINFLO VTT-FINFLO KT=0.202 KT=0.202 Vapour volume fraction 20% KT=0.202 VTT-FINFLO KT=0.202 Vapour volume fraction 50% VTT-FINFLO KT=0.202 KT=0.202 Vapour volume fraction 80%

37

6.3 Cavity surface, Case 2.3.3

Cradle-SC/Tetra

CSSRC-Fluent

HSVA-QCM/PPB

INSEAN-PFC

Blade surface region $p \le p_v$

SSPA-Fluent

TUHH-FreSCO+

Vapour volume fraction 80%

Vapour volume fraction

UniGenua-StarCCM+

UniTriest-CFX(FCM)

UniTriest-CFX(Kunz)

UniTriest-CFX(Zwart)

VOITH-Comet

Vapour volume fraction 80%

VTT-FinFlo

6.4 Comparison of thrust coefficient

	case 2.3.1	case 2.3.2	case 2.3.3
	K_{T} [-]	K_{T} [-]	K_{T} [-]
Exp. (non-cavitating)	0.3870	0.2450	0.1670
Exp. (cavitating)	0.3725	0.2064	0.1362
Berg-Procal	0.3760		
Cradle-SC/Tetra	0.3750	0.1990	0.1380
CSSRC-Fluent	0.3740	0.1940	0.1320
INSEAN-PFC	0.3570	0.2330	0.1610
SSPA-Fluent	0.3880	0.2050	0.1440
TUHH-FreSCO+	0.3830		0.1440
TUHH-FreSCO+ (small-large coef.)		0.2420 - 0.1370	
UniGenua-Panel	0.3922	0.2369	0.1378
UniGenua-StarCCM	0.3782	0.2035	0.1306
UniTriest-CFX(FCM)	0.3740	0.2030	0.1300
UniTriest-CFX(Kunz)	0.3750	0.2100	0.1330
UniTriest-CFX(Zwart)	0.3730	0.1960	0.1330
VOITH-Comet	0.3852	0.2101	0.1513
VTT-FinFlo	0.3860	0.2020	0.1420

Table 3: Thrust coefficients of cavitating propeller

Table 4: Difference between computed and measured thrust of cavitating propeller

	case 2.3.1	case 2.3.2	case 2.3.3
	ΔK_T [%]	ΔK_T [%]	ΔK_T [%]
Berg-Procal	0.94		
Cradle-SC/Tetra	0.67	-3.59	1.32
CSSRC-Fluent	0.40	-6.01	-3.08
INSEAN-PFC	-4.16	12.89	18.21
SSPA-Fluent	4.16	-0.68	5.73
TUHH-FreSCO+	2.82		5.73
TUHH-FreSCO+ (small-large coef.)		17.2533.62	
UniGenua-Panel	5.29	14.78	1.17
UniGenua-StarCCM	1.53	-1.41	-4.11
UniTriest-CFX(FCM)	0.40	-1.65	-4.55
UniTriest-CFX(Kunz)	0.67	1.74	-2.35
UniTriest-CFX(Zwart)	0.13	-5.04	-2.35
VOITH-Comet	3.41	1.79	11.09
VTT-FinFlo	3.62	-2.13	4.26

Case 2.3.1

Cavitation Test Pressure distribution

Evaluation

Berg-OpenFOAM

Case 2.3.1

Cradle-SC/Tetra

HSVA-PPB

HSVA-QCM

INSEAN-PFC

SSPA-Fluent

TUHH-Fresco+

UniGenua-Panel

6

UniGenua-StarCCM(kw)

UniTriest-CFX-FCM

UniTriest-CFX-Kunz

UniTriest-CFX-Zwart

VOITH-Comet

VTT-FinFlo

Case 2.3.2

Cavitation Test Pressure distribution

Evaluation

Berg-OpenFOAM

Cradle-SC/Tetra

HSVA-PPB

HSVA-QCM

INSEAN-PFC

SSPA-Fluent

UniGenua-Panel

6

UniGenua-StarCCM(kw)

UniTriest-CFX-FCM

UniTriest-CFX-Kunz

UniTriest-CFX-Zwart

VOITH-Comet

VTT-FinFlo

Case 2.3.3

Cavitation Test Pressure distribution

Evaluation

Berg-OpenFOAM

Cradle-SC/Tetra

Case 2.3.3

CSSRC-Fluent

HSVA-PPB

HSVA-QCM

INSEAN-PFC

SSPA-Fluent

TUHH-Fresco+

UniGenua-Panel

UniGenua-StarCCM(kw)

UniTriest-CFX-FCM

UniTriest-CFX-Kunz

UniTriest-CFX-Zwart

VOITH-Comet

VTT-FinFlo

