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SUMMARY

State-of-the-art approaches to cavitation modelling, their

drawbacks and benefits are discussed in the paper. A

combination of the Euler-Euler and Euler-Lagrange approaches

aimed to reduce computational time is suggested. Numerical

results for a challenging industrial application, such as

cavitating five-blade controllable pitch propeller flow are

presented and compared with the experiments. The proposed

method allows to perform accurate cavitation predictions in a

reasonable amount of wall-clock time.

INTRODUCTION

An Euler-Lagrange approach to two-phase liquid-vapor flow

modelling has been recently suggested as an alternative to a

widely used volume-of-fluid (VoF) based Euler-Euler methods

[2, 13]. In this approach vapor is considered as a discrete

phase, composed of individual bubbles. Bubble dynamics

in surrounding liquid is governed by Newtonian equations of

motion coupled with the Rayleigh-Plesset equation for the

description of the vaporisation/condensation process. With such

an approach various forces acting on an individual bubble as

well as water quality effects can be taken into account providing

more accurate prediction of cavitation patterns [6]. However, it

should be mentioned that Euler-Lagrange approaches require

significant computational resources due to the large number of

tracked bubbles and micro time scales. Therefore, advanced

high performance strategies are needed [16].

Reliable prediction of cavitating flows is of a high

importance in marine applications, turbomachinery, chemical

and biomedical applications. Recently performed joint

simulation exercises for a cavitating propeller displayed that

Euler-Euler cavitation models in general give a fair agreement

with the experiments for the global engineering parameters

[1]. Nevertheless, it was shown that results obtained with

the Euler-Euler approaches show significant dependency on

internal model constants and that these approaches fail to

predict tip vortex cavitation unless very fine grids are used.

In this paper both Euler-Euler and Euler-Lagrange

approaches are briefly described. A combined model using

benefits of both methods is suggested. As an example,

numerical simulations of a cavitating propeller at a Reynolds

number of 1.4·106 are presented. The original Euler-Lagrange

approach is compared with the Euler-Euler and combined

Euler-Euler/Euler-Lagrange models. The latter is seem to

provide a very good compromise between accuracy and

computational efficiency.

NUMERICAL MODEL

In the present work an in-house solver FreSCo+, a

joint development of Hamburg University of Technology

(TUHH) and the Hamburgische Schiffbau-Versuchsanstalt

(HSVA) [11] was used. The two-phase flow is modeled as

a dynamic liquid/vapor mixture with properties defined by a

supplementary vapour-volume fraction and only one set of

Navier-Stokes equations is solved.

For the solution of the Navier-Stokes equations for the

Eulerian liquid/vapor-mixture a segregated control-volume

method based on the strong conservation form of the

momentum equations is used. It employs a cell-centred,

co-located storage arrangement for all transport properties.

Structured and unstructured grids, based on arbitrary polyhedral

cells or hanging nodes, can be used. The implicit numerical

approximation is second-order accurate in space and time.

Integrals are approximated using the conventional mid-point

rule. The solution is iterated to convergence using a

pressure-correction SIMPLE scheme. Accordingly, local

density changes due to the change of vapor content have

to be considered. Various turbulence-closure models are

available with respect to statistical (RANS) or scale-resolving

(LES, DES) approaches. Since the data structure is generally

unstructured, suitable pre-conditioned iterative sparse-matrix

solvers for symmetric and non-symmetric systems (e.g.

GMRES, BiCG, QMR, CGS or BiCGStab) can be employed.

Governing equations

The fluid mixture of an incompressible liquid and bubbles

containing vapor and homogeneous gas is described by the
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isothermal Navier-Stokes equations

∂ρ

∂ t
+∇ · (ρu) = 0,

∂ρu

∂ t
+(u ·∇)(ρu) =−∇p+∇ ·τ +F.

(1)

Here τ denotes the viscous stress tensor and F represents

volume forces. In the present work k-ω RANS approach [15] is

used for turbulence modelling.

The mixture density ρ and mixture viscosity μ are computed

as a sum of partial densities and viscosities of the fluid ( f ) and

vapor (v)

ρ = αρv +(1−α)ρ f , μ = αμv +(1−α)μ f . (2)

Here α is the vapor volume fraction defined as the ratio between

the vapor volume and the total volume of a control volume

α =Vv/V .

Euler-Euler cavitation model

Within Euler-Euler approach vapour volume fraction is

computed via an additional transport equation

∂α

∂ t
+∇ · (αu) = R. (3)

The source term R determines the mass (volume) transfer

between vapor and liquid. Several different models exist

to define R, which all refer to a simplified Rayleigh-Plesset

equation and employ various empirical constants. In the present

work the definition suggested by Sauer [12] was used

R = 4πR2
bn0

√
2

3

|p∗v − p|

ρl

(1−α)sign(p∗v − p), (4)

where n0 denotes the bubble density and Rb refers to a

representative local bubble radius. Note that the original vapor

pressure used by Sauer is replaced by a modified pressure

p∗v to take into account turbulence influence on the cavitation

inception as suggested by Singhal et al. [14]

p∗v = pv +0.195ρk, (5)

with k being the turbulent kinetic energy.

The model proved to be adequate for sheet cavitation

prediction in case of using adjusted internal model constants

[1]. Nevertheless this approach has an intrinsic no-slip

condition between the phases, doesn’t allow to take into

individual bubble behaviour and interaction between bubbles,

doesn’t consider inhomogeneous or transient water quality

aspects and scale effects.

Euler-Lagrange cavitation model

The Euler-Lagrange approach allows to overcome some of

the above mentioned drawbacks of the Euler-Euler approach.

Within this approach individual bubbles composing discrete

phase are started upstream of the cavitation region and tracked

in the surrounding fluid [2, 16].

The kinematics of the bubbles is computed from a

momentum equation [9, 10]

dv

dt
=−2g+3

Du

Dt
+

3

4

CD

R
|u−v|(u−v)+

3

4
CL

(u−v)×ω

α
+

3

R
(u−v)

dR

dt
, (6)

where α = |ω|R/|u− v|, CL is a lift coefficient, CD is a drag

coefficient as given in [10].

The solution of the modified Rayleigh-Plesset equation as

published by [4] is used to determine the evolution of the bubble

diameter

RR̈+
3

2
Ṙ2 =

1

ρ f

[
pν + pg − p∞ −

2σ

R
−

4μ f

R
Ṙ
]
+

(u−v)2

4
, (7)

where pg is the gas pressure inside the bubble defined by a

polytropic compression with a polytropic exponent k=1.4, p∞

is the local pressure outside the bubble and σ is the surface

tension.

In turbulent flows it might be important to take into account

bubble break-up which occurs due to turbulent fluctuations and

bubble/turbulent eddy collision. The probability based model of

Martinez-Bazan et al. ( [7, 8]) displayed very good agreement

with experiments for a bubble break-up in a fully developed

turbulent flow over a wide range of bubble sizes. This model

has been implemented into the current framework.

To obtain fluid parameters needed for solution of the

equations (6) and (7) a gradient-based interpolation from the

fluid mesh cell center to the position of the bubble (defined

by the position of it’s center) is performed for each bubble

[16]. The vapour-volume fraction is calculated from the discrete

bubbles for each fluid mesh cell via Gaussian kernel-based

interpolation as suggested by Shams et al. [13].

Combined model

The main drawback of the Euler-Lagrange approach are

increased computational demands due to the large number of

tracked bubbles. Typically, momentum and Rayleigh-Plesset

equations are solved via Crank–Nicolson scheme for several

millions bubbles. Note that time step used in these scheme is

about thousand times smaller than for the Euler phase due to

the very small bubble sizes. An efficient hybrid MPI/OpenMP

parallelization has been implemented [16] but the model is

still quite expensive in terms of required time/computational

resources.

To reduce the computational cost a combined

Euler-Euler/Euler-Lagrange approach is suggested. Within

this approach bubbles initialized only in a certain area which

requires more accurate consideration (e.g. tip vortex) and

Euler-Lagrange solution is used there, the rest of domain is

computed via an Euler-Euler approach.

The numerical algorithm of the combined model for one

Eulerian physical time step (non-parallel version) can be

described as follows:

1. Update Eulerian time tn+1
f = tn

f +�t f

2. Calculate new mixture pressure, velocities and turbulent

quantities by solving equations (1)

3. Inject specified number of nuclei at initial position. The

initial nuclei spectra (nuclei concentration and initial

diameter distribution) depends on a water quality and is

either known from experiments or estimated. The initial

position is defined by an area upstream of the cavitation

region. Bubbles are started randomly within this area
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4. For each of the bubbles proceed while Lagrangian time

tvi
≤ tn+1

f :

• Update Lagrangian time for ith bubble tvi
=tvi

+�tvi

• Update bubble size and position solving iteratively

equations (6) and (7)

5. Using above described probability based model compute

bubbles break-up

6. Calculate vapor-volume fraction from bubbles

7. Solve vapor volume fraction equation (3) imposing

calculated on the previous step vapor-volume fraction

from bubbles (in cells where it is greater than zero)

8. Update mixture density and viscosity

RESULTS

Test case description and numerical setup

Cavitation tests for a five-blade controllable pitch

propeller (Potsdam Propeller Test Case - PPTC,

http://www.sva-potsdam.de/pptc) were conducted in

the large test section of the cavitation tunnel K15A of the

SVA Potsdam for various operational points. The propeller

diameter refers to D=250mm. It features a chord length at

r/R=0.7 of c/D= 0.417, a pitch ratio of 1.635 at r/R=0.7, a

hub-diameter ratio of 0.3, an area ratio of 0.779 and a skew

angle of 18.8◦. The operating conditions for the selected case

refer to an advance coefficient of 1.01, a cavitation number of

1.96, Reynolds number at r/R=0.7 of 1.4 ·106 and air content of

80% of saturation.

For numerical simulations two computational grids has been

generated - one has 4·106 cells with refinement for one blade

in order to assess the blade resolution dependency (Figure 1).

Another grid has 12·106 cells with additionally refined region

in tip vortex (Figure 2). It has been generated accordingly to the

authors’ previous experience that Euler-Euler models requiring

very fine grid resolution in the tip vortex region [17].

A uniform velocity of 5.301 m/s was imposed at the inflow

boundary. At the outlet boundary a uniform pressure was

specified providing desired cavitation number. No-slip walls

with wall functions were assigned to the hub and propeller

blades. A slip-wall boundary condition was employed along

the outer circumference.

Figure 1: PPTC propeller, (left) blades surface mesh, (right) XY

plane view

Figure 2: Refined vortex region (contains ∼ 8 ·106 cells)

Figure 3: PPTC propeller, experimental cavitation pattern

The investigated cavitation case reveals tip vortex and

suction side cavitation in the near-hub region. Figure 3 shows

a sketch of the cavitation pattern observed in experiments with

high-speed video [3].

Euler-Euler model results

Figure 4 shows isosurface of vapor volume fraction equal to

0.2 obtained on the 4·106 cells grid by the Sauer Euler-Euler

model. As expected, sheet cavitation on the blade suction

side and hub vortex cavitation are predicted quite well, but

no cavitation is observed in the tip vortex cavitation. The

resolved vortex is not strong enough to cause the required

pressure reduction in it’s core which is the only mechanism

in the Euler-Euler approach responsible for the the cavitation

inception. Similar results were obtained with use of other

Euler-Euler models [1].

Figure 4: PPTC propeller, Euler-Euler model results, 4·106

cells grid

With grid refinement in the tip vortex region, computed

pressure drops enough to start cavitation. As one can see on

Figure 5 cavitation pattern is now reproduced quite successfully.

It required about eight million additional nodes to resolve

tip vortex correctly with a current model. Less dissipative

turbulence models like LES/DES or special techniques aimed

at reduction of turbulent viscosity in the vortex region i.e.
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vorticity confinement methods [5] might reduce such severe

requirements to the grid quality. That is the subject of further

studies.

Figure 5: PPTC propeller, Euler-Euler model results, 12·106

cells grid

Euler-Lagrange model results

Nuclei distribution required for the Euler-Lagrange model

has been measured experimentally with the Laser Doppler

Anemometry (LDA) technique under the aegis of the

BMWi-project KonKav-I. Experimental work was performed

by the Institute for General Electrical Engineering of the

University of Rostock. Figure 6 displays measured bubble

spectra for the considered test case. Measured bubble diameters

lay within range of 10 to 200 microns with most of bubbles

within 20-120 microns range.

At every Eulerian physical time 140 bubbles were injected in

the area upstream the propeller at radius of tip blade as shown

in Figure 6. Number of injected bubbles corresponds to the

number of nuclei measured in the experiment and their radius

is randomly chosen according to the measured probability

density function. Bubbles injected in this area develop farther

downstream and get into the tip vortex region of one of the

blades. Note that bubble injection area is restricted to one blade

tip area and doesn’t cover the whole domain which otherwise

would require much more injected bubbles.
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Figure 6: PPTC propeller, nuclei distribution at σ = 1.96 and

air content 80% used to release bubbles in the selected area

upstream the propeller blades

Figure 7: PPTC propeller, Euler-Lagrange model, coarse grid.

Vapor bubbles (top), vapor volume fraction (bottom)

Figure 7 displays instantaneous snapshot of vapor bubbles

and corresponding vapor volume fraction computed from these

bubbles on 4·106 cells grid. In contradistinction to the similar

Euler-Euler model results (Figure 4), Euler-Lagrange model

predicts tip vortex cavitation even with this grid, but cavitating

vortex weakens and dissapears downstream the blade quite

rapidly. Vapor bubles grow in the low pressure region at the

blade tip and convected farther downstream, but then they are

condensing due to the too high pressure given by the Euler

phase solution on relatively coarse grid. Single travelling

vapor bubbles are also found near the upper part of the blade.

They cannot be predicted by the Euler-Euler approach because

of the no-slip condition between phases and relatively high

pressure in this region, but within the Euler-Lagrange approach,

which considers bubble movement separately, single bubble

may penetrate higher pressure regions and ”survive” there some

time. No cavitation can be seen in the near-hub region as no

bubbles were injected there.

Same as for Euler-Euler simulations, with refined grid

tip vortex core pressure reduces and vapor bubbles now not

condense but develop in the tip vortex. Cavitation pattern

predicted by the Euler-Lagrange model (Figure 8) is in a fair

agreement with the experiment as well as with the Euler-Euler

model results.

It should be also mentioned, that in spite of the similarity

for the cavitation pattern computed by two approaches,

Euler-Lagrange model has much more potential benefits arising

from the discrete model for the vapor phase, which better

corresponds to the physics of the cavitation phenomenon.

Among them are erosion prediction, which requires to account

of impact pressure from individual bubbles near the wall,

acoustic pressure calculations, which also require individual

bubble information, water quality and scale effects, which

are not considered by the Euler-Euler approach, but may be

addressed by the Euler-Lagrange method [6].

Figure 8: PPTC propeller, Euler-Lagrange model, refined grid.

Vapor bubbles (top), vapor volume fraction (bottom)
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Combined model results

As discussed above, a combination of the Euler-Euler

and Euler-Lagrange approaches has most of the benefits

of the Euler-Lagrange model in specific regions of interest

and reduced computational costs due to use of simplified

Euler-Euler approach in the rest of the domain. Figure 9 shows

results obtained with the combined model with the refined grid

of 12·106 cells. As expected, cavitating tip vortex is predicted

very similar to the Euler-Lagrange model results (compare

with Figure 8) when near-hub cavitation is predicted similar to

Euler-Euler approach (compare with Figure 5).

Figure 9: PPTC propeller, combined

Euler-Euler/Euler-Lagrange model, refined grid. Vapor

bubbles (top), vapor volume fraction (bottom)

Table 1 analyses computational times required to simulate

one propeller revolution (360 time steps) with different

models. All simulations has been performed with the 12·106

cells grid on the North-German Supercomputing Alliance

(HLRN-II) supercomputing system ICE2 (www.hlrn.de) with

128 Intel Xeon Gainestown CPU cores. Euler-Euler simulations

required 5.2 wall-clock hours to simulate one revolution.

Same simulations with Euler-Lagrange model restricted to

the tip vortex region required 30% more computational time.

Estimated computational time for simulations of the whole

domain with Euler-Lagrange model is at least five time more

as there would be five times more injected bubbles. Therefore,

combined Euler-Euler/Euler-Lagrange model which required

only 35% more time as compared to the Euler-Euler model does

significantly reduces computational efforts.

Table 1: Computational time for one propeller revolution

Model Time

Euler-Euler 5.2 hours

Euler-Lagrange (tip vortex only) 6.7 hours

Euler-Lagrange (whole domain) est. 23.3 hours

Combined Euler-Euler/Euler-Lagrange 7 hours

CONCLUSIONS

Three approaches to cavitation modelling has been

described - the traditional Euler-Euler approach based on

solution of an additional transport equation for vapor volume

fraction, the advanced Euler-Lagrange approach considering

vapor phase as a discrete phase composed of numerous

vapor bubbles and the combination of these two approaches.

The latter aimed to use benefits of both models - fair

prediction accuracy of the Euler-Lagrange approach and

reduced computational costs of the Euler-Euler approach.

Numerical results for a cavitating propeller flow computed

with all three models were presented and compared with the

experiments. The Euler-Euler model failed to predict the tip

vortex cavitation unless using very fine grids in this region.

Euler-Lagrange model seems to be less demanding to grid

size but still require reliable prediction of the pressure and

velocity fields. The combined model results are very close to

the results of the Euler-Lagrange model in the tip vortex and

Euler-Euler model in the rest of the domain. At the same the

combined model requires for this test case about three times less

computational time as compared to the pure Euler-Lagrange

model.

The present techniques can be applied to a wide range of

multiphase engineering applications. The potential capabilities

of these techniques include acoustic pressure calculation and

erosion risk estimation, study of water quality and scale effects.

These are the topics of the current and future work.
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