Case 2: Geometry PPTC

Propeller

The geometry is given in model scale.

Propeller diameter	D	[mm]	250.0000
Pitch at r/R=0.7	P0.7	[mm]	408.7500
Pitch at r/R=0.75	P0.75	[mm]	407.3804
Mean pitch	Pmean	[mm]	391.8812
Chord length at r/R=0.70	C0.70	[mm]	104.1670
Chord length at r/R=0.75	C0.75	[mm]	106.3476
Thickness at r/R=0.75	t0.75	[mm]	3.7916
Pitch ratio	P0.7/D	[-]	1.6350
Mean pitch ratio	Pmean/D	[-]	1.5675
Area ratio	AE/A0	[-]	0.7790
Skew	θ_{eff}	[°]	18.8000
Hub diameter ratio	dh/D	[-]	0.1500
Number of blades	Z	[-]	5
Direction of rotation			right-handed (SCS)

- The propeller is a controllable pitch propeller. This affects the propeller blade design near the hub and results in a 0.3 mm gap between hub and propeller blade near the leading and trailing edge of the propeller.
- The trailing edge for the upper propeller radii is sharp.
- The propeller was designed to generate a tip vortex.
- Two coordinate systems are specified. The ship coordinate system (SCS) is used for the open water tests and corresponds to the usual coordinate system. For the velocity measurements (LDV) a second coordinates system was introduced, the propeller coordinate system (PCS). The intention was to measure the axial velocities inline with the positive x-axis and thereby obtain positive axial velocities. Which coordinate system is used will be specified.

Hub cap

Different hub cap geometries are provided. The hub caps differ whether they are employed in a pull or push arrangement. The hub cap geometry is provided with the propeller geometry for the specific test cases.

Ship coordinate system (SCS)

The ship coordinate system is an orthogonal right-handed system, with the x-axis pointing upstream and the z-axis upwards. The SCS is employed for the open water tests.

Fig. 1: Ship coordinate system

Propeller coordinate system (PCS)

An orthogonal coordinate system is used for the propeller, with the x-axis pointing downstream and the z-axis upwards. Please note, that the direction of rotation is defined in the ship coordinate system.

Fig. 2: Propeller coordinate system