		01_BERG		02_CRADLE		03_CSSRC	04_HSVA	UT MAPIC		08_SSPA	09_TUHH	10_UniGenua	11 IIniTui oot		12_VICUS	13_VOITH	14_VTT
			1	2	3			1	2				1	3			
A - (Computational Domain																
	Domain Topology																
A 1	1 steady domain																
AI	1 rotating domain						Х	Х	Х	Х	Х	Х			Х		х
	Multiple domains	х	х	Х	Х	х							Х	Х		Х	
	Grid-coupling technique																
12	Sliding		Х	Х	Х											Х	
AL	Overset																
	Multiple ref. Frames	Х				х		Х	Х	Х		Х	Х	Х	Х		
B - I	Propeller Representation																
	Resolution																
B 1	Geometrically resolved	Х			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Unresolved + Body forces		Х	Х													
	Number of considered blades																
DJ	Complete propeller	х	Х	Х	Х		Х				Х					Х	
D2	Single blade + periodicity (matching grids)					Х		Х	Х	Х		Х					Х
	Single blade + periodicity (non-matching grids)												Х	Х	Х		
C - 0	Computational Grid (if both C-parts are used: F	ixed D	omain/	'Part)													
	Туре																
C1	Structured								Х					Х			Х
	Unstructured	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х		Х	Х	
	Local-grid refinement																
C	Possible - used here	X	X	X	X		X	X	X		X	X			X	X	
C2	Possible - not used here					х				Х			Х				Х
	Not possible													Х			
	Primary volume elements						<u> </u>										

C 2	Tetraheder		Х	Х	Х	Х		Х					Х				
C3	Hexahedral	Х					Х		Х	Х	Х			Х			X
	Polyhedral											Х			Х	Х	
	Primary surface elements																
C4	Quads						Х		Х	Х	Х			Х			Х
C4	Triangles	Х	Х	Х	Х	Х		Х				Х	Х		Х		
	Mixed															Х	
	Wall-boundary layer type																
C5	Prism layer	Х	Х	Х	Х			Х				Х	Х		Х	Х	
C3	Hex layer						Х		Х	Х	Х			Х			Х
	Poly layer					Х											
	Blade meshing																

C6	Homogeneous for all blades	Х	Х			Х	Х	Х	X	Х		Х			Х	Х	Х
	One blade refined			Х	Х						Х						
C7	Number of cells across boundary layer	5	20	5	5	0		4		34	9	20				6	28
	Y ⁺ -value at																
Ce	r/R = 0,4	118	<1	30	30	120	100	0.2	20	1	30	3			0.28	30	~1
	r/R = 0,7	140	<1	30	30	120	150	0.3	30	1	30	3.5			0.42	40	~1
	r/R = 0.9	160	<1	30	30	120	120	0.4	40	1	50	4.2			0.62	50	~1
С9	Averaged amount of cells per resolved blade	2,762,945	165,000	235,000	235,000	658,000	42,000	12,700	22,000	254,440	90,000	2,500,000	328,380	261,066	26,400	200,000	4,269,568
C10	Averaged amount of nodes per resolved blade												65,439	275,680			
C - (Computational Grid (if both C-parts are used: R	otating	g Doma	nin/Par	·t)												
	Туре																
C1	Structured		I	I	-	-	I	I		I	-	-		Х			I
	Unstructured												Х				
	Local-grid refinement								-								
C2	Possible - used here												Х				
C2	Possible - not used here																
	Not possible													Х			
	Primary volume elements																
C3	Tetraheder												Х				
0.5	Hexahedral													Х			
	Polyhedral																
	Primary surface elements								-								
C4	Quads													Х			
	Traingles												Х				
	Mixed																
	Wall-boundary layer type																
05	Prism layer												х				

US.	Hex laver	!												х			
	Poly layer																
	Blade meshing																
C6	Homogeneous for all blades																
	One blade refined												х	Х			
C7	Number of cells across boundary layer																
	Y ⁺ -value at											ļ				. <u> </u>	<u>,</u>
CO	r/R = 0.4												22	51			
Cð	r/R = 0,7												29	32			
	r/R = 0.9												37	30			
	Averaged amount of cells per resolved blade												4	90]
CO													t,31	5,30			
09													892	316			
													1,	5,			
	Averaged amount of nodes per resolved blade												L	14			
C10													6,05	0,2			
													586	,36			
		(:61-41-	D	4		7* 1)						(1			<u>.</u>
D - 1	cormanized Dimensions of the Physical Domain	(II DOLN	D-pai	ts are	usea: 1	Txed d	iomain)									
D1	for all domains		1.0		• • •	2		•			0 -		• •				-
DI	X_min / D	5.58	-12	-2.28	-2.28	- 3	-2	2	2.28	2	-0.5	-2	22	2 2 2		-12	5
	X max / D		-		0	4		(2.20	-	1	_	-2.5	-2.3	т 10		10
		13.42	4	8	8	4	3	6	6	4	1	6	5.3	-2.3 5.3	10	6	10
	for non-cyl. Domains	13.42	4	8	8	4	3	6	6	4	1	6	5.3	-2.3 5.3	10	6	10
D2a	for non-cyl. Domains Y_min / D		-4	8	8	4	3	6	6	4	1	6	-2.3 5.3	-2.3 5.3		6 -6	10
D2a	for non-cyl. Domains Y_min / D Y_max / D		4 -4 4	8 -1.2 1.2	8 -1.2 1.2	4	3	6 	6 	4	1 	6 	-2.3 5.3 	-2.3 5.3 	 	6 -6 6	10
D2a	for non-cyl. Domains Y_min / D Y_max / D for non cyl. Domains		4	8 -1.2 1.2	8 -1.2 1.2	4 	3	6 	6 	4 		6 		-2.3 5.3 	 	6 -6 6	
D2a D3a	for non-cyl. Domains Y_min / D Y_max / D for non cyl. Domains Z_min / D		4 -4 4 -4	8 -1.2 1.2 -1.2	8 -1.2 1.2 -1.2	4	 	6 	 	4 		6 		-2.3 5.3 	 	6 -6 -6	10
D2a D3a	for non-cyl. Domains Y_min / D Y_max / D for non cyl. Domains Z_min / D Z_max / D	 	4 -4 4 -4 1.5	8 -1.2 1.2 -1.2 1.2	8 -1.2 1.2 -1.2 1.2	4	 	6 	 	4 	 	 	 	-2.3 5.3 	 	6 -6 6 6	10
D2a D3a	for non-cyl. Domains Y_min / D Y_max / D for non cyl. Domains Z_min / D Z_max / D for cyl. Domains	 3	4 -4 4 -4 1.5 	8 -1.2 1.2 -1.2 1.2 	8 -1.2 1.2 -1.2 1.2 	4 3	3 1.35	6 3	 1.2	 	1 0.34	6 1.34	-2.3 5.3 5	-2.3 5.3 5	 5	6 -6 6 -6 6 	10
D2a D3a D2b	for non-cyl. Domains Y_min / D Y_max / D for non cyl. Domains Z_min / D Z_max / D for cyl. Domains open water	 3	4 -4 4 1.5 	8 -1.2 1.2 -1.2 1.2 	8 -1.2 1.2 -1.2 1.2 	4 3	 1.35	6 3	 1.2	 3	1 0.34	 1.34	-2.3 5.3 5	-2.3 5.3 5	 5	6 -6 6 	10 4
D2a D3a D2b	for non-cyl. Domains Y_min / D Y_max / D for non cyl. Domains Z_min / D Z_max / D for cyl. Domains open water cavitation tunnel	 3	4 -4 4 1.5 	8 -1.2 1.2 -1.2 1.2 	8 -1.2 1.2 -1.2 1.2 	4	 1.35	6 3	 1.2	 3 1.36	1 0.34	 1.34	-2.3 5.3 5	-2.3 5.3 5	 5	6 -6 6 	10 4 1.35
D2a D3a D2b D - N	for non-cyl. Domains Y_min / D Y_max / D for non cyl. Domains Z_min / D Z_max / D for cyl. Domains open water cavitation tunnel Wormalized Dimensions of the Physical Domain	 3 (if both	-4 -4 1.5 D-par	8 -1.2 1.2 -1.2 1.2 	8 -1.2 1.2 -1.2 1.2 used: I	4 3 Rotatir	3 1.35 og dom	6 3 ain)	 1.2	 3 1.36	1 0.34	 1.34	-2.3 5.3 5	-2.3 5.3 5	 5	6 -6 6 	10 4 1.35

D1	X_min / D												-0.7	-0.41			
	X_max / D												0.6	0.31			
	for non-cyl. Domains																
D2a	Y_min / D																
	Y_max / D																
	for non cyl. Domains																
D3a	Z_min / D	-		1	1					1		1					1
	Z_max / D	-		1	1					1		1					1
	for cyl. Domains			1	1					1		1	0.6	0.6			1
D2b	owt.			1	1					1		1					1
	cav	-		1	1					1	-	1			1		1
E - I	Numerical Approximation																
	Finite Approximation Scheme (Fluid)																
	Finite volume Navier-Stokes	Х	Х	Х	Х	Х	х	х	х	Х	Х	Х	Х	Х	Х	X	х
E1	Finite element Navier-Stokes																
	Mixed FV / FE Navier-Stokes																
	None																
	Finite Approximation Scheme (Propeller)																
БJ	Navier-Stokes	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
ĽZ	BEM																
	VLM																
	Coordinates																
F3	Cartesian	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
E3	Cylindrical - fixed																
	Cylindrical - rotating																
	Convection scheme (momentum eq.)																
	high-order upwind	Х	Х	Х	Х		Х	Х	Х		Х		Х	Х			х
F1	2nd-order centered					Х						Х			Х		
124	high-order centered																
	blended UDS / CDS									Х						Х	
	limited / blended downwind (compressive)																
	Transient approximation																

E5	implicit	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	explicit																
	Special Vortex-Treatment Technique:																
E6	none		Х	Х	Х			Х	Х			Х				Х	
	refinement	-					Х	-			-				1		
	Spatial order of accuracy (neglecting BC)																
E7	2nd order	I	Х	Х	Х	Х	I	Х	Х	-	Х				I		
	30 % 1st order; 70 % 2nd order	I					I	1		-					I	Х	
	Temporal order of accuracy																
E8	1st order	-					1	-			Х	Х			1	Х	
	2nd order				Х												
	Time step																
	steady	1	Х	Х		Х		Х	Х	-					I		
	quasi steady	I						I		-					I		Х
E9	0,5deg / Cycle	I			Х			I		-					I		
	3.02E-05	1					Х	1							1		
	1.00E-04	1						1	-		Х			-	1	Х	
	5.00E-05	1						1		-		Х			I		
	Equivalent angle of rot. for a time step																
	0,25°	I					Х	1		-					I		
E10	1°	-						-							1	Х	
	1.00E+00										Х						
	7,85E10-03 [rad/timestep]	-						-				Х			-		
F - 1	Furbulence treatment																
	Model name																
	k-omega					Х	Х	Х	Х	Х	Х				Х		
	k-epsilon			Х	Х							Х				Х	Х
	one-equation model																
	Reynolds-stress transport model																
F1	algebraic stress model																
	hybrid RANS / LES																
	LES																
	SST	Х															

	other (see reference)		Х										х	х			
	Inviscid or Laminar																
	Transition																
БĴ	Fully turbulent	Х		Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
ΓZ	Modelled transition		Х							Х							
	Fixed transition																
	Convection scheme (Turbulence Eqn.)																
	1st-order upwind	Х									Х		Х	Х			
Б3	high-order upwind		Х	Х	Х			Х	Х								Х
гэ	2nd-order centered					Х						Х			Х		
	high-ordered centered																
	blended UDS / CDS						Х			х						х	
G - 1	Boundary conditions																
	Blade																

	Slip flow (or Euler)					х											
G1	Laminar (no slip)							X	Х								Х
	Logarithmic	х		Х	Х		Х				Х				Х	Х	
	Hybrid laminar / logarithmic		Х							Х		Х	Х	Х			
	Hub																
	Slip flow (or Euler)					Х											
G2	Laminar (no slip)							Х	Х								Х
	Logarithmic	Х		Х	Х		Х				Х				Х	Х	
	Hybrid laminar / logarithmic		Х							Х		Х	Х	Х			
	Inlet																
G3	Fixed Velocity	х	Х	Х	Х	х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Fixed Pressure																
	Outlet																
	Fixed Velocity																
G4	Fixed Pressure	х	х	х	Х	х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	х
	Characteristic / Far-Field BC																
	Extrapolate / Far-Field BC																
	Outer domain																
	Slip flow (or Euler)	х	х	х	Х	х	Х	х	Х	Х	Х	Х	Х	Х	Х		х
G5	Laminar (no slip)															Х	
	Logarithmic																
	Hybrid laminar / logarithmic																
Н-(Computational Model																
	Fluid																
H1	compressible				Х												
	incompressible	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Pressure																
H2	Equation of state																
	pressure correction / projection scheme	х	х	х	Х	х	Х	x	X	Х	Х	Х	Х	Х	Х	Х	х
	Two-Phase flow treatment		-	-		-	-	-	-				-	-			
	Euler / Euler - VOF		x	X	X	x	X			X	Х	X	X	X			х
H3	Euler / Euler - VOF (single-Phase)																
	Euler / Lagrange	Х													Х		

	Euler / Euler															
I - C	avitation Model															
	Туре															
	Mass Transfer - VOF	Х			Х	Х	Х	Х	Х	Х		Х	 Х	Х	Х	Х
	Euler / Euler															
I1	Lagrangian bubble dynamics															
	Thermodynamic equilibrium															
	linear BEM															
	Mass Transfer - VOF in addition to Lagrange										Х					
	Author reference															
12	Okuda and Ikohagi			1	Х		1	1	1	1			 			
12	Merkle			1			1	1	1	1			 			Х
	Zwart (2004)			1			1	1	1	1	Х		 			
	Initial (minimam) bubble diameter [mm]		-		-	-										
12	1.00E-03			1			1	1	1	1		Х			Х	
15	1.00E-06												 Х			
	5.00E-03			1			I	1	1	I	Х					
14	Maximum bubble diameter [mm]															
14	1.00E+00			1			1	1	-	1	Х		 			
	Number of bubbles/m ³ (nuclei number)															
15	1.00E+08			1			I	1	1		Х		 		Х	
15	1.00E+12			I			I	I	I			Х	 -	-		
	1.00E+13			1			I	I	1	Х			 -			
	Mass-transfer / VOF interaction (for VOF)															
I6	RHS pressure / pc equation			I	Х	Х	Х						 Х		Х	
	RHS and matrix of pressure / pc equation	Х		1				Х	Х	Х	Х			Х		Х
I7	Vapor density [kg/m³]			1	0.02	0.02		I	1	0.02	0.03	0.6	 0			0.02
	Model acronym															
	Kunz	Х						Х	Х				 k	Х		
	Sauer			1						Х		Х			Х	
I8	Zwart										Х		 Z			
	Singhal				Х	х	Х						 S			
	Merkle															Х

	Senocak																
	Condensation source term based on																
10	Pressure difference	Х				Х	Х	Х	Х						Х		Х
19	Square root of pressure difference				Х					Х	Х			s, z		Х	
	other													k			
	Vaporisation source term based on																
110	Pressure difference					Х								k			X
110	Square root of pressure difference				X					Х	X			S, Z		X	
	others	Х					Х	Х	Х						Х		
	Condensation coefficient value				0.01	0.01					25						370
T11	UniTriest - Kunz													455			
111	UniTriest - Singhal 2,3E-04													S			
	UniTriest - Zwart													0.3			
	Vaporisation coefficient value				0.02	0.02					0.01						370
112	UniTriest - Kunz													4100			
112	UniTriest - Singhal													0.4			
	UniTriest - Zwart													300			
	Limitations to the source term		_	_	-			_		_							
I13	Yes	Х	-	-		Х	Х	Х	X						Х	X	
	No		1	1	Х					Х	Х			Х			Х
	Limitations to the vapor-fraction																
I14	Yes	Х	I	1		Х	Х	Х	Х	Х	Х			Х	Х	Х	
	No		1	1	Х								-				Х
	Convection scheme																
	1st -order upwind		-	-								Х					
	high-order upwind	Х			х	Х	Х	Х	Х		Х			Х	Х	Х	X
I15	2nd-order centered																
	high-order centered		1	-									-				
	blended UDS / CDS		-	-						Х							
	limited / blended downwind (compressive)																
	Modification for turbulent flows																
I16	Yes	Х			х	Х	Х	Х	Х		Х			Х	Х		
	No									Х		Х				Х	Х

	Diffusion term employed																
I17	Yes	Х				Х	X	Х	Х						Х		Х
	No				Х					Х	Х	Х	1	Х		Х	
	Surface tension employed																
I18	Yes	Х			Х	Х	Х	Х	Х					s, z	х		
	No									Х	Х	Х		k		Х	х
	Coupling Scheme																
T 10	Uncoupled (1-way)	Х			Х	Х	Х	Х	X	Х		X			х	Х	х
11)	Coupled to Eulerian mixture phase										Х						
	Coupled to Eulerian liquid phase																
I20	Active forces for momentum eq.										Х						
	Bubble/Bubble-Interaction																
I21	Yes																
	No	Х			Х	Х	Х	Х	Х	Х	Х	Х			х	Х	х
J - (computational Demands																
J1	Number of processes used	8	96	48	48	4	16	1		24	16	18	4	4	1	32	
	Number of revolutions computed																
	steady state	x	Х	Х		Х		Х	X				Х				
	2				Х		Х										
12	3										Х						
J <i>2</i>	5															Х	
	10											Х					
	16																х
	>6000									Х							
	Wall-clock time per revolution		-	-	-		-		-			-		-			
J3	time	24h	4h	2h	19h		19h				55h						
	time per revolution											8,5h				1500s	
К	Code Reference		[1]		[2]		[3]				[4]	[5]	[6]	[7]	[8]	[9]	[10]

[1]

Walters, D.K., Leylek, J.H. (2004). 'A New Model for Boundary Layer Transition Using a Single-Point RANS Approach', ASME Journal of Turbomachinery, 126, pp.193-202

Walters, D.K., Cokljat, D.(2008). 'A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of

Okuda, K., Ikohagi, T. (1996). 'Numerical Simulation of Collapsing Behavior of Bubble Clouds', Trans. JSME (B) Vol. 62 No.603, pp.38-43 (in Japanese) Singhal, A. K., Athavale, M. M., Li, H., Jiang, Y. (2002). 'Mathematical basis and validation of the full cavitation model', Jour of Fluids Engineering 124, pp.617-624 FreSCo+ M. Abdel-Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F.,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.		Transitional Flow', ASME J. of Fluids Eng., 130, 121401
Okuda, K., Ikohagi, I. (1996). Numerical Simulation of Collapsing Behavior of Bubble Clouds', Trans. JSME (B) Vol. 62 No.603, pp.38-43 (in Japanese) Singhal, A. K., Athavale, M. M., Li, H., Jiang, Y. (2002). 'Mathematical basis and validation of the full cavitation model', Journ of Fluids Engineering 124, pp.617-624 FresCo+ FresCo+ M. Abdel-Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.		
Singhal, A. K., Athavale, M. M., Li, H., Jiang, Y. (2002). 'Mathematical basis and validation of the full cavitation model', Jourr of Fluids Engineering 124, pp.617-624 FreSCo+ M. Abdel-Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F.,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.		Okuda, K., Ikohagi, T. (1996). 'Numerical Simulation of Collapsing Behavior of Bubble Clouds', Trans. JSME (B) Vol. 62 No.603, pp.38-43 (in Japanese)
FreSCo+ FreSCo M. Abdel-Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F, Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.		Singhal, A. K., Athavale, M. M., Li, H., Jiang, Y. (2002). 'Mathematical basis and validation of the full cavitation model', Journal of Fluids Engineering 124, pp.617-624
FreSCo M. Abdel-Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F.,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		FreSCo+
M. Abdel-Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F.,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		FreSCo
 vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. 		M. Abdel-Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in
T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.		vortical flowJ. of Heat and Fluid Flow, 31(6):1065 – 1074, 2010
and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.		T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich,
CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications', AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.		and A. Stueck. Challenges and Perspectives for Maritime
Gesellschaft, 103. Band, 2009. CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		CFD Applications. Jahrbuch der Schiffbautechnischen
CD-Adapco StarCCM+ v 5.06 Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		Gesellschaft, 103. Band, 2009.
Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		CD-Adapco StarCCM+ v 5.06
Applications',AIAA Journal, 32(8), p.p. 1598-1605. Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		Applications',AIAA Journal, 32(8), p.p. 1598-1605.
Applications',AIAA Journal, 32(8), p.p. 1598-1605. Kunz, R. F,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		Menter, F. R. (1998). 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Kunz, R. F.,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phas flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		Applications', AIAA Journal, 32(8), p.p. 1598-1605.
Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J.,
flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875. STARCCM+		Venkateswaran, S., & Govindan, T.R. (2000). 'A preconditioned Navier-Stokes method for two-phase
STARCCM+		flows with application to cavitation prediction'. Computers and Fluids 29(8), p.p. 849 – 875.
STARCCMI+		CTADCOM
	l	STARCCM+

[9]

Comet

[10]	Sincoleri, T., 1995. An application of Role's hux-unterence splitting for R-8 to bulence model.
	International journal for numerical methods in fluids (21), pp. 1017-1039.
	Sipilä, T., Siikonen, T., Saisto, I., Martio, J., Reksoprodjo H., 2009. Cavitating Propeller Flows Predicted
	by RANS Solver with Structured Grid and Small Reynolds
	Number Turbulence Model Approach. Proceedings of the 7th international Symposium on Cavitation
	CAV2009. Paper No. 45. 11 pp. Ann Arbor, USA.