		SVA_PPB	SVA_QCM	ISEAN	niTriest
		5_H	5_H	6_IN	0_U
	A - Theoretical model	0	0	0	1
	Formulation				
A1	Vortex Lattice Method		Х		
	Boundary Element Method	х		Х	Х
	Primary unknowns				
	scalar potential - Neumann problem			Х	
	scalar potential - Dirichlet problem	х			Х
AZ	velocity components				
	bound vorticity - Neumann problem		Х		
	bound vorticity - Dirichlet problem				
	B - Numerical scheme and discretisation				
	Solution domain		-		
B1	time domain		Х	Х	Х
	frequency domain	x			
	Discretisation of field variables				
B2	low order: quantities piecewise constans on elements	х	Х	Х	Х
	high order				
	Discretisation of boundary surfaces				
	triangular panels	Х			
B3	flat quadrilateral panels	Х			
	non-flat panels			x^5	\mathbf{x}^{10}
	discrete vortex elements		Х		
D 4	Evaluation of source and doublets influence coefficients				
В4	analytical expressions	х		x ⁶	x ¹¹
	Evaluation of pressure				
B5	linear Bernoulli's equation	х	Х		Х
	non-linear Bernoulli's equation			Х	
	Evaluation of potential gradient terms in the Bernoulli's equation				
B6	direct (velocity based formulations)		Х		
	by finite differences of velocity potential	Х		Х	Х
	as gradient of integral equation for the velocity potential				
	Pressure condition at blade trailing edge				
B 7	linear Kutta condition	Х		Х	
	non-linear Kutta condition				Х
	implicit Kutta condition (due to arrangement of singul. / contr. Points)		х		
	Pressure correction at blade leading edge				
B8	not included			Х	Х
	included		x^2		

			J		
		PB	CN		
				AN	iest
		N/	N/	SE	iТr
		SH	SH	Z,	-n
		05_	05_	-90	10_
	C - Propeller geometry description				
C1	Number of blades: steady flow				
CI	one blade solved, solution dublicated on all blades	Х	Х	Х	Х
	all blades solved				
~	Number of blades: unsteady flow				
C2	one blade solved, solution shifted and transferred to other blades	Х	X		X
	all blades solved			Х	
G2					
C3	Isolated blades without hub	Х	Х		
	hubbed propeller: blades attached to solid hub	Х		Х	Х
	Blade snape adaptions			7	12
C4	blade tip cutting			x′	X ¹²
	blade trailing edge sharpening enforced to avoid blunt shape	Х	Х	Х	Х
	D - Trailing wake model	-			
	Type of wake geometry model				
	prescribed wake - fixed pitch				x ¹³
D1	prescribed wake - variable pitch	\mathbf{x}^{1}	x^{3}		
	prescribed wake - radial contraction				
	KT				
	wake alignment iterative procedure - full alignment: all wake node			v	14
	coordinates (x,r,θ) updated			Λ	Х
	wake alignment iterative procedure - partial alignment				
	Evaluation of velocity field				
D2	direct (velocity based formulations)				
	by finite differences of velocity potential				
	as gradient of integral equation for the velocity potential			Х	Х
	Treatment of singularities associated to walks induced valuation				
D 2	I reatment of singularities associated to wake-induced velocities				
D3	finite size vertex core model				
	desingularization model			X	X
D4	tip vortex				
	discretization			х	х
	evaluation of tin vortex detachment point and wake surface adaptation				
	Leading edge vortex				
D5	modelling not included	v	v	v	v
	modelling included	Λ	л	л	Λ
	6 • • • • • • •				

		5_HSVA_PPB	15_HSVA_QCM	06_INSEAN	0_UniTriest
	E - Viscous flow model	0	0	0	
	Semi-empirical corrections				
E1	not included, blade loads from full potential flow solution				
	friction_induced correction to blade	v ⁴	v ⁴	v ⁸	v ¹⁵
	high blade engle of ettech connection to blade loade	Λ	Λ	9	16
	Nigh blade angle-of attack correction to blade loads			X	X
	viscous / invicio coupling models				
	not included	X	X	X	
E2	dimensional houndary layer model				x ¹⁷
	notential flow model coupled with boundary layer solver via: three-				
	dimensional boundary layer model				
	F - Cavitation model				
	Two-phase flow modelling				
	conformal mapping				
F1	linearised cavity theory	x	X		х
	non-linear surface tracking methods			X	
	Coupling with unsteady flow ananlysis				
F2	steady cavitation model (quasi-steady approach)	х	Х		
	unsteady cavitation model (fully-unsteady approach)			Х	х
	Numerical scheme		1		
	2D model solved stripwise on 3D blade surface		Х		
F3	full 3D model	Х		Х	
	singularities on actual cavity surface (fully non linear model)				
	singularities kept fixed on body surface (partially non linear model)	х	Х	Х	х
	Cavitation types addressed				
	sheet cavitation on solid surfaces - blade suction side	Х	Х	Х	Х
F4	sheet cavitation on solid surfaces - blade pressure side				х
	supercavitation	Х	Х	Х	Х
	vortex cavitation				
	bubble cavitation				
	Sheet cavity detachment model		1		1
	detachment point imposed	Х	Х	Х	X
F5	determined from local pressure distribution				X
	determined from boundary layer flow characteristics				
	determined from body surface curvature (i.e., smooth detachment				х
	condition)				
F6	open equity (50% eleced)		-		
	alosed cavity	X	X		
	re-entrant jet model			X	X

1) leaving at pitch of blade / reaching constant asymptotic wake pitch

2) Nose Radius entered

3) leaving at pitch of blade / asymptotic wake with beta i

4) section drag formula depending on local Re-number=quasi stripe method

5) bilinear interpolation among panel edges

6) Morino, Chen, Suciu, 1975.

7) R: > 99.5%

8) flat plate analogy, laminar and turbulent flow, transition condition imposed

9) see report

10) hyperboloidal panels

11) Morino, L. e Kuo, C.C. Subsonic Potential Aerodynamic for

complex configuration: a general theory. AIAA Journal, 12(2) pp. 191-197, 1974.

12) We use a finite value of chord at tip to avoid excessive skewed panels

13) mean between geometrical and hydrodynamic pitch, adopted in present work for cavitating analysis

14) adopted for open water computations in present work

15) Frictional Line with Van Oossanen formulation for thickness/chord or constant drag coefficient

16) Polhamus suction analogy

17) not adopted in present calculation but possible within the developed solver